Community Detection in Sparse Networks by the Symmetrized Laplacian Inverse Matrix (SLIM)

Xianshi Yu

the Hong Kong University of Science and Technology Joint work with Bing-Yi Jing, Ting Li & Ningchen Ying

19 Aug 2017

Outline

- Network community detection
- Community detection in sparse networks
- SLIM method
- Empirical performance of the SLIM method
- Comparison between the SLIM method & other spectral methods

Network Community Detection

Network Community Detection Motivations

- Parallel Computation
- Detect functional modules of proteins
- Find friend circles

Network Community Detection Methods

Algorithm-based methods

Maximize Modularity

e.g. Newman and Girvan, 2004

• Search and combine cliques

e.g. Palla et al., 2005

Network Community Detection Methods

Model-based methods

• MLE

e.g. Clauset et al., 2008; Airoldi, 2009; Karrer1 and Newman, 2011

Spectral methods for Stochastic Block Model

Rohe et al., 2011; Jin, 2015; Zhang et al., 2015

Community Detection in **Sparse** Networks

Community Detection in Sparse Networks Networks with Different Edge Densities

ER Random Graphs, n=100

Community Detection in Sparse Networks Three Scenarios

- 1 $E(degree) = \Omega (log n)$
- 2 $E(degree) = \infty$
- (3) E(degree) = O(1)
- 2. and 3. are commonly seen but understudied

Community Detection in Sparse Networks Pioneer Works

Krzakala et al. 2013; Newman 2013

Consider the network of edges, non-backtracking

Amini et al. 2013; Joseph and Yu 2013; Gao et al. 2015

Normalized Spectral Clustering with Regularization

Bhattacharyya and Bickel 2014; Bhattacharyya and Bickel 2015

Graph distance based (GDB), multi-dimensional scaling

SLIM (Symmetrized Laplacian Inverse Matrix) Method

SLIM Method Consider First Hitting Time

SLIM Method Symmetrized Laplacian Inverse Matrix

Laplacian Inverse Matrix

$$W = \sum_{k=0}^{\infty} \exp(-\gamma k) (D^{-1}A)^k = (I - D^{-1}Ae^{-\gamma})^{-1}$$

Symmetrized Laplacian Inverse Matrix (SLIM)

$$M = \frac{W + W^T}{2}$$

Alternative Explanation of SLIM

- $W = \sum_{k=0}^{\infty} exp(-\gamma k)(D^{-1}A)^k$ is a weighted summation of different scales of representations of network structure
- $W_m = \sum_{k=0}^m exp(-\gamma k)(D^{-1}A)^k$ is reasonable approximation of W

Apply Classical Spectral Method to M

Algorithm

- Compute M (Mm)
- Perform Spectral decomposition to M
- View first k eigenvectors as locations of nodes
- Clustering(e.g. k-means)

Empirical Performance of the SLIM Method

Empirical Performance of the SLIM Method Simulation under SBM

Empirical Performance of the SLIM Method Simulation under DCSBM

Empirical Performance of the SLIM Method Simulation under DCSBM

Replicate Experiment 2 in Jin, J. (2015) (a paper addressing Degree Corrected SBM specifically which proposed SCORE)

Method	SC	NSC	NGM	SCORE	SLIM
Mean	0.378	0.165	0.355	0.070	0.0619
(SD)	(0.041)	(0.084)	(0.01)	(0.004)	(0.009)

Mean & SD of error rate

Empirical Performance of the SLIM Method Real Data Analysis

Politic Blogs with Hyperlinks

- Each has been manually labeled to be Conservative or Liberal
- Sparse and inhomogeneous in degree

error rate of the SLIM method is 50/1222

The best performance know is 55/1222 (SCORE)

Comparison Between the SLIM Method & Other Spectral Methods

Comparison Between the SLIM Method & Other Spectral Methods Illustration of Spectral Method

Comparison Between the SLIM Method & Other Spectral Methods Illustration of Spectral Method

Comparison Between the SLIM Method & Other Spectral Methods Compare Matrices

Under Stochastic Block Model (SBM), in expextation, the matrices to be decomposed are BLOCK MATRICES

Adjacency Matrix

Normalized Laplacian Matrix

Graph Distance Matrix

SLIM

Comparison Between the SLIM Method & Other Spectral Methods Compare Eigenvectors

Adjacency Matrix

Normalized Laplacian Matrix

Graph Distance Matrix

SLIM

Theoretical Result

Theoretical Result Consistency in Sparse Scenario

Accuracy $\stackrel{P}{\rightarrow}$ 1 if d $\rightarrow \infty$ as n $\rightarrow \infty$, under certain conditions

- Consistency of the SLIM method is proven for dense networks
- Consistency of "SLIM with regularization" is proven for sparse networks
- Here the "regularization" is to deal with nodes with with very large or small degrees

Summary

Motivation

- □ First hitting time describes the closeness between nodes
- The exponential transformation emphasizes local similarities
- SLIM is never sparse

Performance

- Spectral method is more computationally scalable than MLE methods
- Empirical study show that the SLIM method works well especially for <u>sparse</u> networks and networks with <u>inhomogeneous degrees</u>

Reference

- Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2009). Mixed membership stochas- tic blockmodels. In Advances in Neural Information Processing Systems (pp. 33-40).
- Bhattacharyya, S. and Bickel, P. J. (2014). Community detection in networks using graph dis-tance. arXiv preprint arXiv:1401.3915.
- Bhattacharyya, Sharmodeep, and Peter J. Bickel. "Spectral Clustering and Block Models: A Review And A New Algorithm." arXiv preprint arXiv:1508.01819 (2015).
- Clauset, A., Moore, C. and Newman, M. E. (2008). Hierarchical structure and the prediction of missing links in networks. *Nature*, 453(7191), 98-101.
- □ Jin, J. (2015). Fast community detection by SCORE. The Annals of Statistics, 43(1), 57-89.
- □ Karrer, B. and Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. *Physical Review E*, 83(1), 016107.

Reference

- Krzakala, F., Cristopher, M., Elchanan, M., Joe N., Allan S., Lenka Z., and Pan Z. (2013) "Spectral redemption in clustering sparse networks." Proceedings of the National Academy of Sciences 110, no. 52: 20935-20940.
- Newman, M. E. and Girvan, M. (2004). Finding and evaluating community structure in net- works. *Physical Review E*, 69(2), 026113.
- Newman, M. E. J. (2013) Spectral community detection in sparse networks. arXiv preprint arXiv:1308.6494.
- Palla, G., Derenyi, I., Farkas, I. and Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. *Nature*, 435(7043), 814-818.
- Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 1878-1915.
- □ Zhang, Y., Levina, E. and Zhu, J. (2014). Detecting overlapping communities in networks with spectral methods. arXiv preprint arXiv:1412.3432.

Appendix Stochastic Block Model (SBM)

- n nodes and K groups
- g(i) ∈ {1,...,K} indicates the group assignment
- Node i and j connects with probability P(g(i),g(j)), where P is a K×K matrix

Appendix Stochastic Block Model (SBM)

Example: 5 nodes and 2 groups