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Collaborative Filtering (CF)



Collaborative Filtering

R is observed on Ω       ∈ [n1] × [n2]



Collaborative Filtering

❖ Memory Based Methods

❖ Model Based Methods 

Low-Rank Assumption



Collaborative Filtering

∥ ⋅ ∥*
convex relaxation rank( ⋅ )

minimize ∥X∥*
subject to 𝒫Ω(X) = 𝒫Ω(R)

Candès and Recht 2009

minimize 
X

∥𝒫Ω(X − R)∥2
F + λ∥X∥*Mazumder et al. 2010

singular value soft-thresholding algorithmCai et al. 2010
Mazumder et al. 2010



Using Social Network Information 
in CF 



Using Social Network Information



Using Social Network Information

Ro = Un1×rVT
n2×r

U and V(                are respectively user/product feature matrices)

minimize 
U,V

∥𝒫Ω(UVT − R)∥2
F + Pnet(U)Jamali and Ester 2010

Ma et al. 2011
Yang et al. 2014

coordinate descent algorithm

• non-convex problem; 
• no theoretical characterization about the 

effect of adding relational information

Previous Methods:



NetRec Method
• objective function
• algorithm
• numerical results
• theoretical results



A

NetRec Method 

Objective Function

minimize 
X

∥𝒫Ω(X − R)∥2
F + λ∥X∥* +γP1(XR)

+γP2(XR)
or

RΩ

P1(X ) =
1
2 ∑

i, j

Ai, j∥Xi. − Xj.∥2
2

P2(X ) =
n1

∑
i=1

∥Xi. −
n1

∑
j=1

Ai, jXj.

∑n
j=1 Ai, j

∥2
2

 and  XR = 𝒫Ωc(X ) + 𝒫Ω(R)

NetRec1

NetRec2



NetRec Method 

Objective Function

why           , not          ?Pi(XR) Pi(X)

•          introduces additional bias
• they encourage X with constant columns
• empirically                                close to zero

Pi(X)

Pi(X) generates X̂

P1(X ) =
1
2 ∑

i, j

Ai, j∥Xi. − Xj.∥2
2

P2(X ) =
n1

∑
i=1

∥Xi. −
n1

∑
j=1

Ai, jXj.

∑n
j=1 Ai, j

∥2
2



Algorithm



NetRec Method 

Algorithm

minimize
X

 ∥𝒫Ω(X − R)∥2
F + λ∥X∥* + γ tr XT

RGXR

G = L(A+AT)/2 or LTD−2L, where L = D − A, D = diag(A1)
NetRec1   /   NetRec2

singular value soft-thresholding algorithm (SVST) still available?

Majorization-Minimization (MM) Algorithm



NetRec Method 

Algorithm
Majorization-Minimization Algorithm



NetRec Method 

Algorithm

f(X) = ∥𝒫Ω(X − R)∥2
F + λ∥X∥* + γ tr XT

RGXR

if γ ≤
1

∥G∥
g(X |X(m)) = ∥X − h1(X(m))∥2

F + λ∥X∥*

h1(X(m)) = 𝒫Ωc((I − γG)X(m)
R ) + 𝒫Ω(R)

h2(X(m)) = 𝒫Ωc ((I −
G

∥G∥ ) X(m)
R ) + 𝒫Ω (X(m) +

R − X(m)

γ∥G∥ )

if γ >
1

∥G∥
X(m+1) = S λ

2γ∥G∥
(h2(X(m)))

X(m+1) = argmin g(X |X(m)) = S λ
2
(h1(X(m)))

Sλ(X ) = UΣλ+VT (X = UΣVT) SVST
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NetRec Method 

Numerical Results

NetRec1 & NetRec2

Soft-Impute — minimize 
X

∥𝒫Ω(X − R)∥2
F + λ∥X∥*

mean
i,j∈Ωc

(X̂i,j − Ro
i,j)

2
RMSE



NetRec Method 

Numerical Results

data simulation scheme

Ro, p, σ ⟶ RΩ

n1, n2, r ⟶ Ro

• simulate         and         independently from uniform 
      distributions of matrices satisfying                                    
•         
•

Un1×r Vn2×r

UTU = I and VTV = I

Ro = U ΣVT
diag(Σ) ∼i.i.d. Beta(1,5)

• elements in                are selected to    with probability 
p independently      

•       

[n1] × [n2] Ω

RΩ = Ro
Ω + ε,  with ε ∼ N(0, σ2I )

Ro, d ⟶ A

NN(5) EXP(5)

Pi, j = exp(−αdi, j)



NetRec Method 

Numerical Results
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Soft-Impute — minimize 
X

∥𝒫Ω(X − R)∥2
F + λ∥X∥*

(n1, n2, r, p, σ) = (2000,500,10,0.05,0.3)



NetRec Method 

Numerical Results

minimize 
X

∥𝒫Ω(X − R)∥2
F + λ∥X∥* +γP1(XR) or γP2(XR)

(n1, n2, r, p, σ) = (2000,500,10,0.05,0.3) ; NN(8)

NetRec1
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NetRec Method 

Numerical Results

minimize 
X

∥𝒫Ω(X − R)∥2
F + λ∥X∥* +γP1(XR) or γP2(XR)

(n1, n2, r, p, σ) = (2000,500,10,0.05,0.3) ; EXP(8,0.05)

NetRec1
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NetRec Method 

Numerical Results
when noise magnitude varies

(n1, n2, r, p) = (2000,500,10,0.05) ; NN(8)
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NetRec Method 

Numerical Results

www.yelp.com/dataset

• select restaurants located in a city
• select reviews of these restaurants
• select customers who gave these reviews
• iteratively delete customers/restaurants with less than S reviews

• training : testing = 8:2
• simultaneously center-scale rows and center columns
• apply NetRec/Soft-Impute
• reverse center-scale
• max{min{R̂i, j,5},1}

data preprocessing

examine methods



NetRec Method 

Numerical Results

Edinburgh
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Numerical Results

Cleveland
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Theoretical Results



NetRec Method 

Theoretical Results

Theorem 1: the NetRec algorithm converges to the solution of 
the NetRec1/2 objective function.

Convergence 



NetRec Method 

Theoretical Results

Ro, p, σ ⟶ RΩ
• elements in                are selected to    with probability 

p independently      
•       

[n1] × [n2] Ω

RΩ = Ro
Ω + ε,  with ε ∼ N(0, σ2I )

Error Bound



NetRec Method 

Theoretical Results

Error Bound

X̂net = argmin 
X

∥𝒫Ω(X − R)∥2
F + λ∥X∥* + γP1(XR)

Theorem 2: If      obeys the strong incoherence property with parameter    
and                                    , let                        , then with a proper choice of  
             , W.H.P.                                                        

pn1n2 ≥ Cμ2Nr log6 N
Ro μ

= ev

∥𝒫Ωc(X̂net − Ro)∥F ≤ enet(Ro, A, Ω, δ) .
λ and γ

δ = ∥𝒫Ω(ε)∥F

λUnder the same condition, with a proper choice of   , W.H.P.

X̂v = argmin 
X

∥𝒫Ω(X − R)∥2
F + λ∥X∥*

Candès and Plan 2010

∥𝒫Ωc(X̂v − Ro)∥F ≤ 4
(2 + p) min(n1, n2)

p
δ



NetRec Method 

Theoretical Results

δ = ∥𝒫Ω(ε)∥F

η = ∥LRo∥F, LRo =
1
2

∂P1(X)
∂X

Ro

Theorem 3: If                               ,  then               and               is strictly increasing in      
η
δ

< f(Ro, A, Ω, p) enet < ev ev − enet δ .



Conclusion

❖ optimization problem that leverages social network data in collaborative filtering

❖ convex objective function; SVST algorithm that finds the global optimum

❖ special effort to reduce the bias introduced by the network related term

❖ calibrate the improvement brought by relational information

❖ numerical experiments with the Yelp data  
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