

Collaborative Filtering with Awareness of Social Networks

Xianshi Yu

Collaborators: Bing-Yi Jing, Ningchen Ying & Ting Li

Collaborative Filtering with Awareness of Social Networks

Contents

Introduction and Review

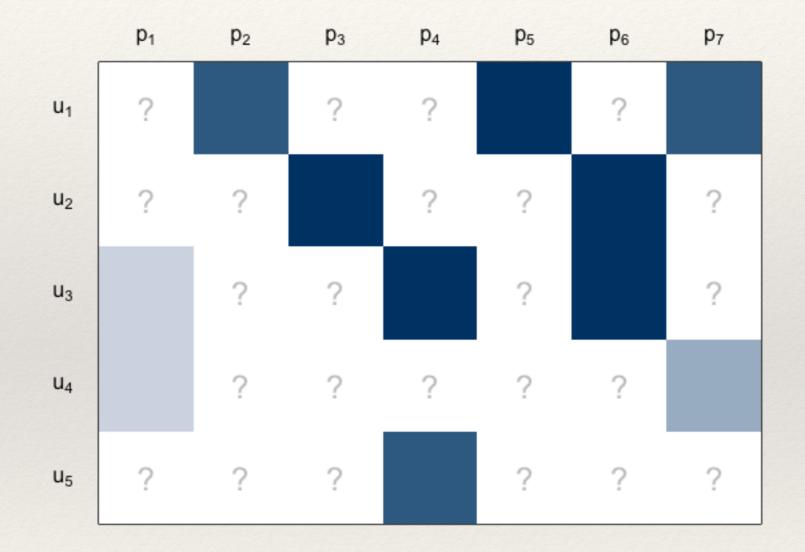
- collaborative filtering (CF)
- using social network information in CF

NetRec Method

- objective function
- algorithm
- numerical results
- theoretical results

Collaborative Filtering (CF)

Collaborative Filtering



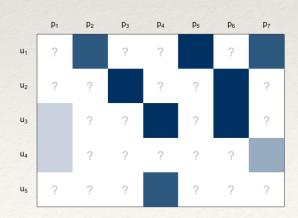
R is observed on $\Omega \in [n_1] \times [n_2]$

Collaborative Filtering

* Memory Based Methods

* Model Based Methods

Low-Rank Assumption



Collaborative Filtering

rank(\cdot) $\xrightarrow{\text{convex relaxation}} \| \cdot \|_*$

Candès and Recht 2009

minimize $||X||_*$ subject to $\mathscr{P}_{\Omega}(X) = \mathscr{P}_{\Omega}(R)$

Mazumder et al. 2010

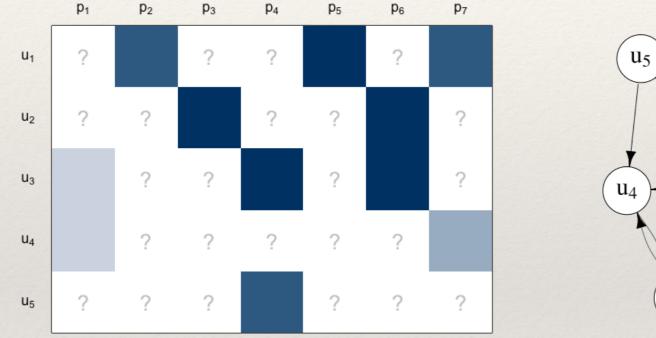
$$\underset{X}{\text{minimize }} \|\mathscr{P}_{\Omega}(X-R)\|_{F}^{2} + \lambda \|X\|_{*}$$

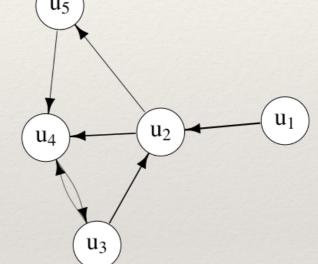
Cai et al. 2010 Mazumder et al. 2010

singular value soft-thresholding algorithm

Using Social Network Information in CF

Using Social Network Information





Using Social Network Information

Previous Methods:

$$R^o = U_{n_1 \times r} V_{n_2 \times r}^T$$

(*U* and *V* are respectively user/product feature matrices)

Jamali and Ester 2010 Ma et al. 2011 Yang et al. 2014

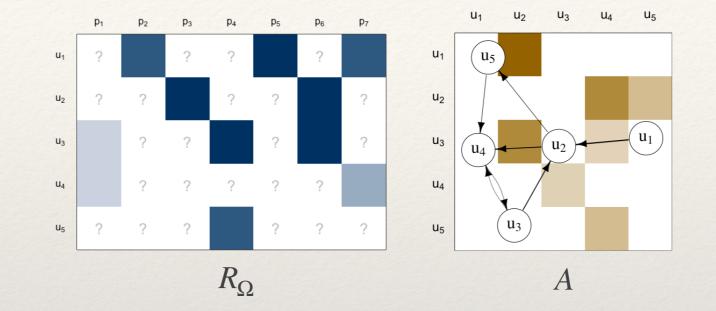
$$\underset{U,V}{\text{minimize}} \|\mathscr{P}_{\Omega}(UV^{T} - R)\|_{F}^{2} + P_{\text{net}}(U)$$

coordinate descent algorithm

- non-convex problem;
- no theoretical characterization about the effect of adding relational information

- objective function
- algorithm
- numerical results
- theoretical results

Objective Function



$$\begin{array}{l} \underset{X}{\text{minimize }} \| \mathscr{P}_{\Omega}(X - R) \|_{F}^{2} + \lambda \| X \|_{*} + \gamma P_{1}(X_{R}) \\ \text{or} \\ + \gamma P_{2}(X_{R}) \end{array}$$

NetRec1
$$P_1(X) = \frac{1}{2} \sum_{i,j} A_{i,j} ||X_{i.} - X_{j.}||_2^2$$

NetRec2 $P_2(X) = \sum_{i=1}^{n_1} ||X_{i.} - \sum_{j=1}^{n_1} \frac{A_{i,j}X_{j.}}{\sum_{j=1}^n A_{i,j}}||_2^2$ and $X_R = \mathcal{P}_{\Omega^c}(X) + \mathcal{P}_{\Omega}(R)$

Objective Function

why $P_i(X_R)$, not $P_i(X)$?

$$P_{1}(X) = \frac{1}{2} \sum_{i,j} A_{i,j} \|X_{i.} - X_{j.}\|_{2}^{2}$$
$$P_{2}(X) = \sum_{i=1}^{n_{1}} \|X_{i.} - \sum_{j=1}^{n_{1}} \frac{A_{i,j}X_{j.}}{\sum_{j=1}^{n} A_{i,j}}\|_{2}^{2}$$

- $P_i(X)$ introduces additional bias
- they encourage X with constant columns
- empirically $P_i(X)$ generates \hat{X} close to zero

NetRec Method Algorithm

minimize
$$\|\mathscr{P}_{\Omega}(X - R)\|_{F}^{2} + \lambda \|X\|_{*} + \gamma \operatorname{tr} X_{R}^{T} G X_{R}$$

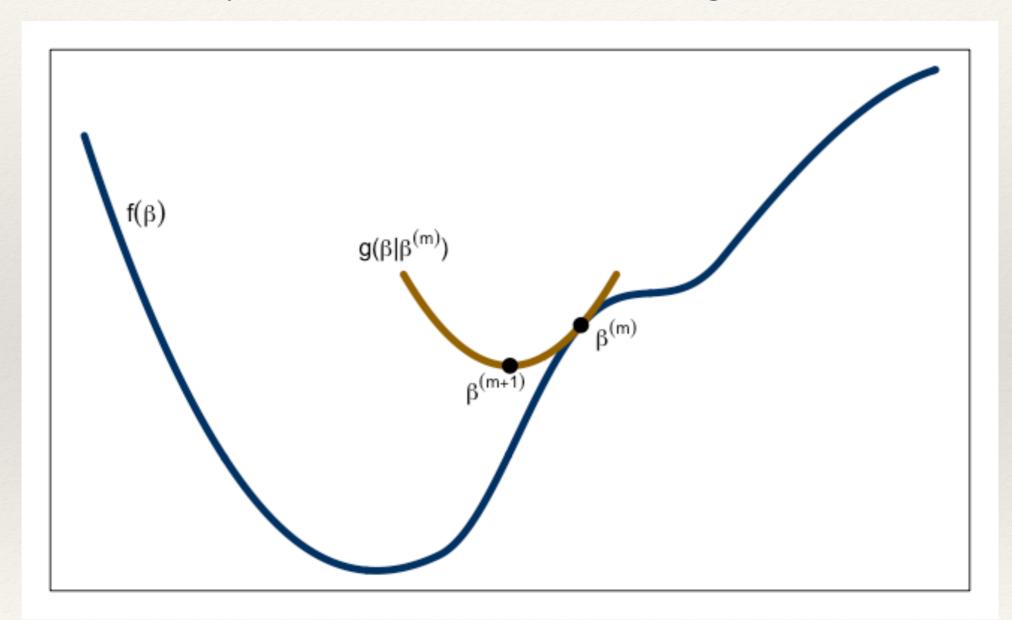
 $G = L_{(A+A^{T})/2} \text{ or } L^{T} D^{-2} L$, where $L = D - A$, $D = \operatorname{diag}(A1)$
NetRec1 / NetRec2

singular value soft-thresholding algorithm (SVST) still available?

Majorization-Minimization (MM) Algorithm

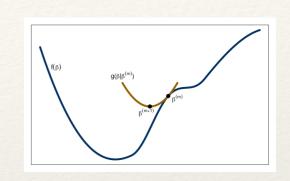
Algorithm

Majorization-Minimization Algorithm



NetRec Method Algorithm

$$f(X) = \|\mathscr{P}_{\Omega}(X - R)\|_{F}^{2} + \lambda \|X\|_{*} + \gamma \operatorname{tr} X_{R}^{T} G X_{R}$$



if
$$\gamma \leq \frac{1}{\|G\|}$$
 $g(X|X^{(m)}) = \|X - h_1(X^{(m)})\|_F^2 + \lambda \|X\|_*$
 $X^{(m+1)} = \operatorname{argmin} g(X|X^{(m)}) = S_{\frac{\lambda}{2}}(h_1(X^{(m)}))$
 $S_{\lambda}(X) = U\Sigma_{\lambda+}V^T(X = U\Sigma V^T) \longleftarrow SVST$

if
$$\gamma > \frac{1}{\|G\|}$$
 $X^{(m+1)} = S_{\frac{\lambda}{2\gamma\|G\|}}(h_2(X^{(m)}))$

$$h_1(X^{(m)}) = \mathscr{P}_{\Omega^c}((I - \gamma G)X_R^{(m)}) + \mathscr{P}_{\Omega}(R)$$

$$h_2(X^{(m)}) = \mathscr{P}_{\Omega^c}\left(\left(I - \frac{G}{\|G\|}\right)X_R^{(m)}\right) + \mathscr{P}_{\Omega}\left(X^{(m)} + \frac{R - X^{(m)}}{\gamma\|G\|}\right)$$

Numerical Results

Numerical Results

NetRec1 & NetRec2

Soft-Impute — minimize $\|\mathscr{P}_{\Omega}(X - R)\|_{F}^{2} + \lambda \|X\|_{*}$

RMSE
$$\sqrt{\underset{i,j\in\Omega^c}{\operatorname{mean}(\hat{X}_{i,j}-R^o_{i,j})^2}}$$

Numerical Results

data simulation scheme

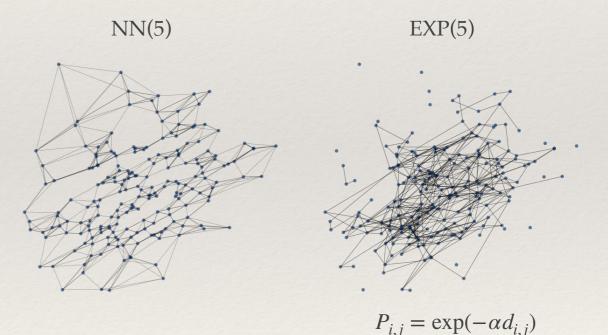
 $n_1, n_2, r \longrightarrow R^o$

- simulate $U_{n_1 \times r}$ and $V_{n_2 \times r}$ independently from uniform distributions of matrices satisfying $U^T U = I$ and $V^T V = I$
- diag(Σ) ~_{*i.i.d.*} Beta(1,5) $R^o = U\Sigma V^T$ •

 $R^{o}, p, \sigma \longrightarrow R_{\Omega}$

- elements in $[n_1] \times [n_2]$ are selected to Ω with probability p independently
- $R_{\Omega} = R_{\Omega}^{o} + \varepsilon$, with $\varepsilon \sim N(0, \sigma^2 I)$

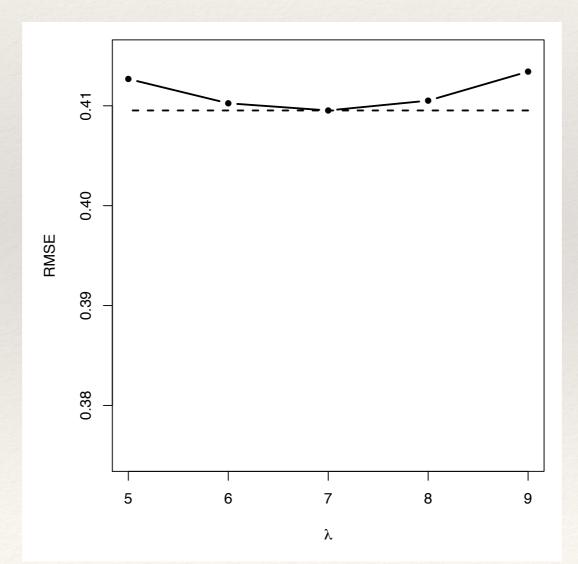
 $R^o, d \longrightarrow A$



Numerical Results

 $(n_1, n_2, r, p, \sigma) = (2000, 500, 10, 0.05, 0.3)$

Soft-Impute — minimize $\|\mathscr{P}_{\Omega}(X-R)\|_{F}^{2} + \lambda \|X\|_{*}$

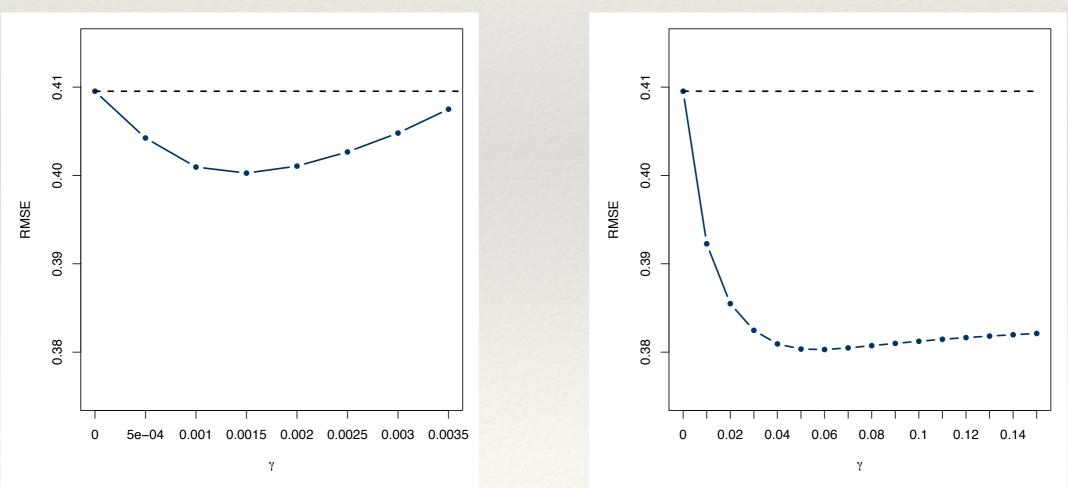


Numerical Results

 $(n_1, n_2, r, p, \sigma) = (2000, 500, 10, 0.05, 0.3);$ NN(8)

 $\underset{X}{\text{minimize }} \|\mathscr{P}_{\Omega}(X-R)\|_{F}^{2} + \lambda \|X\|_{*} + \gamma P_{1}(X_{R}) \text{ or } \gamma P_{2}(X_{R})$

NetRec1

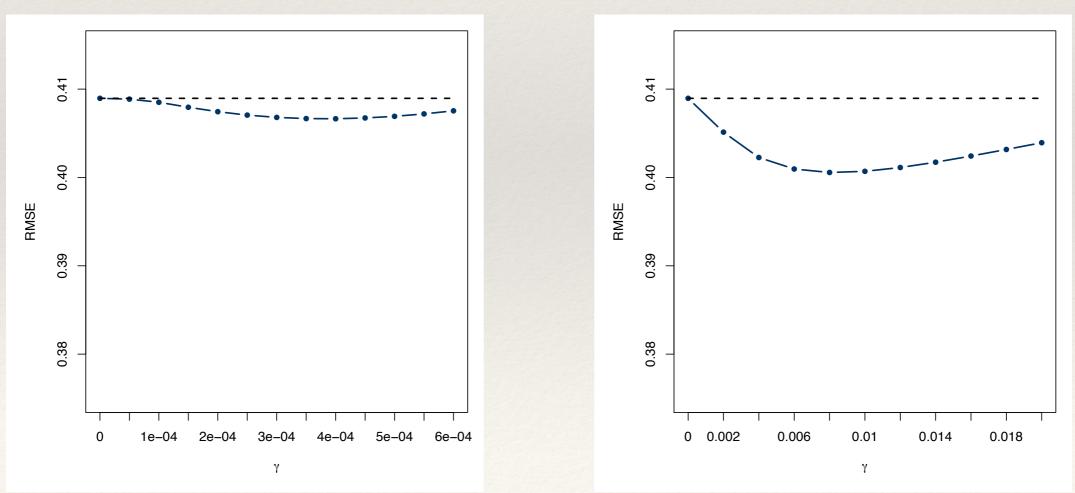


Numerical Results

 $(n_1, n_2, r, p, \sigma) = (2000, 500, 10, 0.05, 0.3); EXP(8, 0.05)$

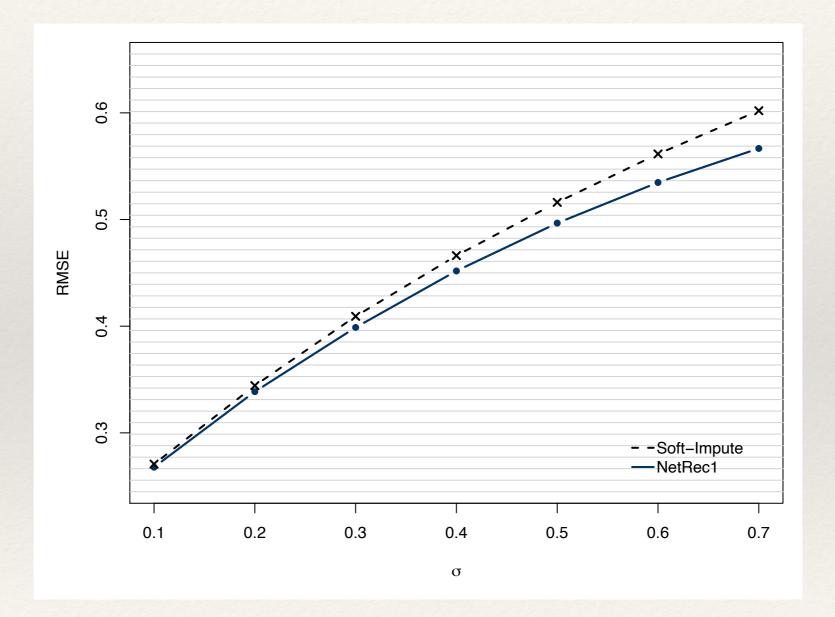
 $\underset{X}{\text{minimize }} \|\mathscr{P}_{\Omega}(X-R)\|_{F}^{2} + \lambda \|X\|_{*} + \gamma P_{1}(X_{R}) \text{ or } \gamma P_{2}(X_{R})$

NetRec2



Numerical Results

when noise magnitude varies



 $(n_1, n_2, r, p) = (2000, 500, 10, 0.05)$; NN(8)

Numerical Results

www.yelp.com/dataset

data preprocessing

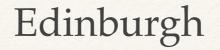
- select restaurants located in a city
- select reviews of these restaurants
- select customers who gave these reviews
- iteratively delete customers/restaurants with less than S reviews

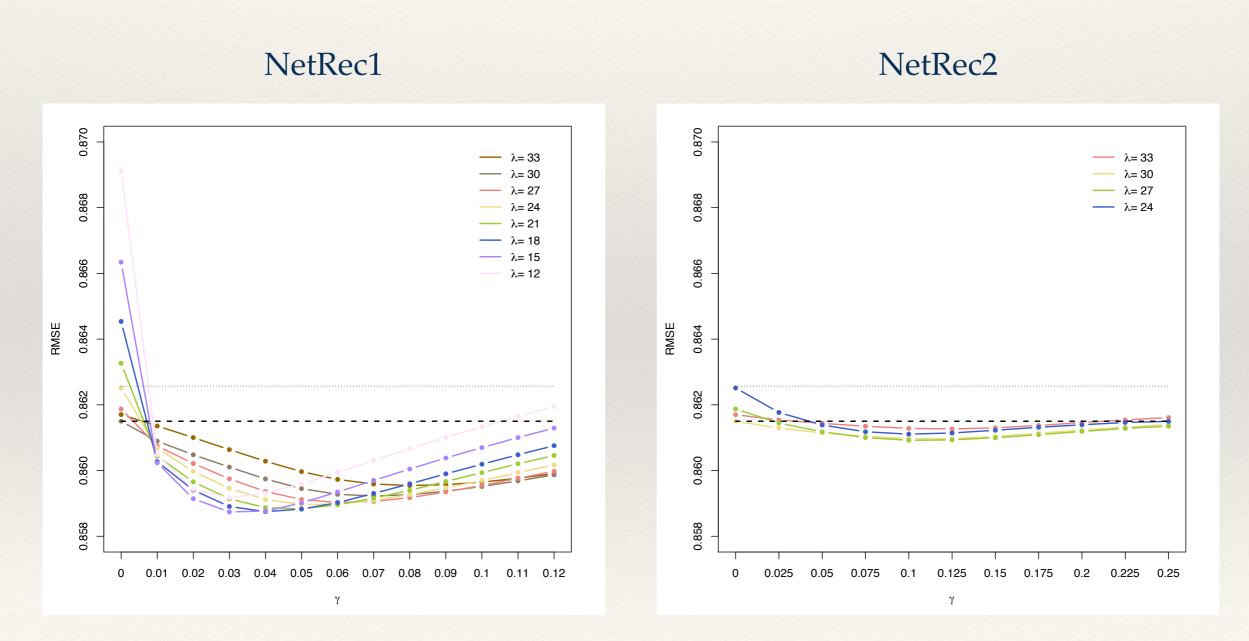
city name	S	$\underset{n_1}{\operatorname{user \ count}}$	restaurant count n_2	review count	average friend count
Edinburgh	5	2029	1268	29317	7.13
Cleveland	6	2205	1196	34270	9.67

	.1 1
examine	methods

- training : testing = 8:2٠
- simultaneously center-scale rows and center columns •
- apply NetRec/Soft-Impute •
- reverse center-scale •
- $\max\{\min\{\hat{R}_{i,j},5\},1\}$ •

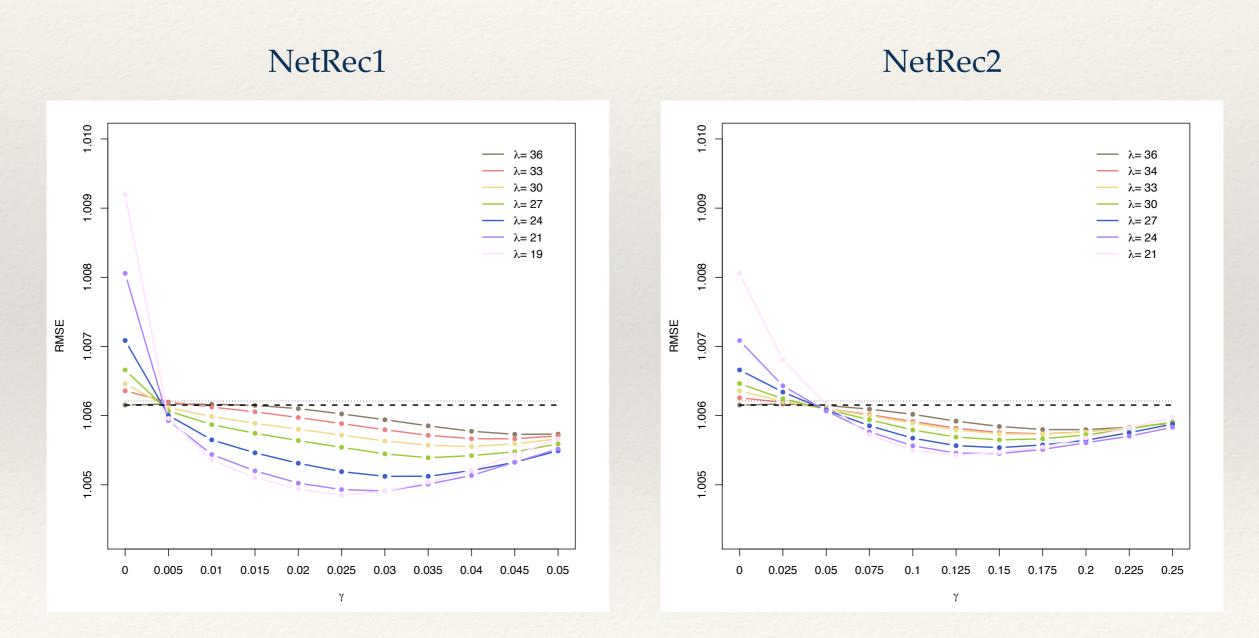
Numerical Results





Numerical Results

Cleveland



Theoretical Results

Theoretical Results

Convergence

Theorem 1: the NetRec algorithm converges to the solution of the NetRec1/2 objective function.

Theoretical Results

Error Bound

$$R^o, p, \sigma \longrightarrow R_{\Omega}$$

• elements in $[n_1] \times [n_2]$ are selected to Ω with probability p independently

• $R_{\Omega} = R_{\Omega}^{o} + \varepsilon$, with $\varepsilon \sim N(0, \sigma^2 I)$

Theoretical Results

Error Bound

$$\hat{X}_{net} = \underset{X}{\operatorname{argmin}} \|\mathscr{P}_{\Omega}(X - R)\|_{F}^{2} + \lambda \|X\|_{*} + \gamma P_{1}(X_{R})$$

Theorem 2: If R^o obeys the strong incoherence property with parameter μ and $pn_1n_2 \ge C\mu^2 Nr \log^6 N$, let $\delta = \|\mathscr{P}_{\Omega}(\varepsilon)\|_F$, then with a proper choice of λ and γ , W.H.P.

$$\|\mathscr{P}_{\Omega^{c}}(\hat{X}_{net}-R^{o})\|_{F} \leq e_{net}(R^{o},A,\Omega,\delta).$$

$$\hat{X}_{v} = \underset{X}{\operatorname{argmin}} \|\mathscr{P}_{\Omega}(X - R)\|_{F}^{2} + \lambda \|X\|_{*}$$

Candès and Plan 2010 Under the same condition, with a proper choice of λ , W.H.P.

$$\|\mathscr{P}_{\Omega^{c}}(\hat{X}_{v} - R^{o})\|_{F} \leq 4\sqrt{\frac{(2+p)\min(n_{1}, n_{2})}{p}}\delta = e_{v}$$

Theoretical Results

Theorem 3: If $\frac{\eta}{\delta} < f(R^o, A, \Omega, p)$, then $e_{net} < e_v$ and $e_v - e_{net}$ is strictly increasing in δ .

$$\delta = \|\mathscr{P}_{\Omega}(\varepsilon)\|_{F}$$
$$\eta = \|LR^{o}\|_{F}, LR^{o} = \frac{1}{2} \frac{\partial P_{1}(X)}{\partial X}\Big|_{R^{o}}$$

Conclusion

- * optimization problem that leverages social network data in collaborative filtering
- * convex objective function; SVST algorithm that finds the global optimum
- * special effort to reduce the bias introduced by the network related term
- calibrate the improvement brought by relational information
- * numerical experiments with the Yelp data

References

- Cai, J. F., Candès, E. J. and Shen, Z. (2010) A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization. 20(4) 1956-1982.
- Candès, E. J. and Recht, B. (2009) Exact matrix completion via convex optimiza- tion. Foundations of Computational mathematics. 9(6) 717.
- Candès, E. J. and Plan, Y. (2010) Matrix completion with noise. Proceedings of the IEEE. 98(6) 925-936.
- Hastie, T., Mazumder, R., Lee, J. D. and Zadeh, R. (2015) Matrix completion and low-rank SVD via fast alternating least squares. Journal of Machine Learning Research. 16 3367-3402.
- Jamali, M. and Ester, M. (2010, September) A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems (pp. 135-142). ACM.
- Mazumder, R., Hastie, T. and Tibshirani, R. (2010) Spectral regularization algorithms for learning large incomplete matrices. Journal of machine learning research. 11(Aug) 2287-2322.
- Ma,H., Zhou,D., Liu,C.,Lyu, M.R.andKing,I.(2011,February) Recommender systems with social regularization. In roceedings of the fourth ACM international con- ference on Web search and data mining (pp. 287-296). ACM.
- Yang,X.,Guo,Y.,Liu,Y.andSteck,H.(2014)A survey of collaborative filtering based social recommender systems. Computer Communications. 41 1-10.
- Yu, X., Li, T, Ying, N. and Jing, B. (2018) Collaborative Filtering with Awareness of Social Networks, submitted.

Q&A