Network Community Detection Using Higher Order Interactions

Xianshi Yu
Joint work with Ji Zhu Aug 03, 2020

Table of contents

1 Real Data Observation

2 Ideas

3 Method

4 Experiment on lawyers' co-work network

5 Model \& Theory

Real Data Observation

triangle

by-fan

by-parallel

feed-forward loop

Certain subgraphs are abundant. [4,5,6]
triange: social network; world wide webs by-fan: transcriptional gene regulation network; neural network by-paralle: neural network; food web

Real Data Observation

The pattern of observed subgraphs could reflect the underlying community memberships.

- How to exploit the configuration of \triangle 's in community detection?
- How to model the abundance and distribution of \triangle ?

Notations

- $\{1,2, \ldots, n\}$ index the nodes.
- $A_{n \times n}$ (adjacency matrix) describes edges of an observed network.
- $A_{i j}=1$ if nodes i and j have an edge, $A_{i j}=0$ otherwise.
- $\Delta_{n \times n \times n}$ represents triangles: $\Delta_{i j k}=1$ iff nodes i, j and k share a triangle. $\Delta_{i j k}=0$ otherwise.
$\star \Delta_{i j k}=A_{i j} A_{j k} A_{j k}$

Goal

- $g_{i} \in\{1,2, \ldots, K\}$ is the community index of node i.
- $Z_{n \times K}$ is a matrix of all zeros, except that $Z_{i g_{i}}=1$ for all i.

Consider the formation of triangles as depending only on community membership

$$
\begin{gathered}
P\left(\Delta_{i j k}=1\right)=C_{g_{i}, g_{j}, g_{k}} \\
\text { i.e. } \mathbb{E}\left(\Delta_{n \times n \times n}\right)=C_{K \times K \times K} \times_{1} Z \times_{2} Z \times_{3} Z
\end{gathered}
$$

Definition of n-mode product $>$ ref

To obtain $C_{K \times K \times K} \times_{1} Z_{n \times K}$
Consider mode-1 fibers of C

(a) Mode-1 (column) fibers: C.jk

(b) Mode-2 (row) fibers:
$\mathrm{C}_{i . k}$

(c) Mode-3 (tube) fibers:
$\mathrm{C}_{i j}$.

Calculate the products of each mode-1 fiber $C_{. j k}$ and Z, namely $Z C_{. j k}^{T}$. Arrange the resulted vectors accordingly to form an $n \times K \times K$ tensor.

Ideas

Remarks

$$
\begin{equation*}
\mathbb{E}(\Delta)=C \times_{1} Z \times_{2} Z \times_{3} Z \tag{1}
\end{equation*}
$$

■ In Stochastic Block Model (SBM), community structure is on $E(A)$.

- (1) does not define a generative model, but a 'constraint' on network models. SBM satisfies (1).

Ideas

How to infer $g_{i}, i \in\{1, \ldots, n\}$ from Δ ?

$$
E\left(\Delta_{. . k}\right), k \in G_{1}
$$

$E\left(\Delta_{. . k}\right), k \in G_{2}$

■ $\mathbb{E}(\Delta)$ is a block tensor, and slices of it, i.e $\mathbb{E}\left(\Delta_{. . k}\right)$, are block matrices. Spectral decomposition of $\mathbb{E}\left(\Delta_{\ldots k}\right)$ reveals g_{i}.

- $\Delta_{\text {.. } k}$ is likely very sparse.

Method

Algorithm

Input: $A_{n \times n}, K$
Output: \hat{Z}
Step 1. Calculate $\Delta=\left(A_{i, j} A_{j, k} A_{i, k}\right)_{i, j, k}$
Step 2. Obtain an initial estimate $Z_{n \times K}^{0}$
Step 3. Calculate sums of slices of $\Delta_{n \times n \times n}$ w.r.t groups defined by Z^{0}. i.e. $S_{\Delta}^{\prime}:=\Delta \times_{3} Z_{. I}^{0}$, for $I \in\{1, \cdots, K\}$.

Step 4. Apply synchronized spectral decomposition to S_{Δ}^{\prime}, $I \in\{1, \cdots, K\}$ to obtain $\hat{U}_{n \times K}$
Step 5. Perform K-means on \hat{U} to obtain \hat{Z}

Method—synchronized spectral decomposition (SynSD)

$$
\hat{U}=\underset{U_{n \times K}^{\prime} U=I}{\arg \max } \sum_{l=1}^{K}\left\|U^{\top} S_{\Delta}^{\prime} U\right\|_{F}^{2}
$$

- SynSD finds 'shared singular vectors'.
- SynSD is a Grassmann manifold optimization problem, for which ample literature and packages are available.

Experiment on lawyers' co-work network

71 attorneys (1104 edges)

seniority	status	gender	office	age
range: $[1,32]$ median:7	partner:36	man:53	Boston:48	range:[26,67]
	associate:35	woman:18	Hartford:19 Providence:4	

practice	law school
litigation:41 corporate:30	harvard, yale:15 ucon:28 other:28

Experiment on lawyers' co-work network

Benchmarks
■ Normalized Spectral Clustering with regularization (NSC-reg)

- High-Order Clustering [1, 2] (HOC) —perform NSC on $\sum_{k=1}^{n} \Delta_{\text {.. }}$

Initial estimate Z^{0} of the new method

- HOC
- Attribute of lawyers

Experiment on lawyers' co-work network

- Column 1\&2: leading two eigenvectors of NSC-reg and HOC
- Column 3: \hat{U} of the new method $(K=2)$

Experiment on lawyers' co-work network

\hat{U} obtained when attributes in bracket are taken as Z^{0}

Model \& Theory

A model that satisfies $\mathbb{E}(\Delta)=C \times_{1} Z \times_{2} Z \times_{3} Z$

- triangle mechanism + edge mechanism
- $T \sim$ independent Bernoulli with $\dddot{P}_{n \times n \times n}=\dddot{B} \times_{1} Z \times_{2} Z \times_{3} Z$
- $\ddot{A} \sim$ independent Bernoulli with $\ddot{P}_{n \times n}$
- $A_{i, j}=\max \left\{\ddot{A}_{i, j}, \mathbf{1}\left(\sum_{k} T_{i, j, k}>0\right)\right\}$

Model \& Theory

Conditions

- $C_{1} \ln ^{4} n \leq \dddot{d} \leq C_{2} n^{\frac{2}{5}}$, where $\dddot{d}=n^{2} \dddot{P}_{\max }$
- $\ddot{d} \leq C_{3} n^{\frac{1}{3}} \ddot{d}^{\frac{1}{6}}$, where $\ddot{d}=n \ddot{P}_{\max }$

Notations

- $\sigma_{\text {min }}^{\prime}=\sigma_{K}\left(\mathbb{E}\left(S_{\Delta}^{\prime}\right)\right), \sigma_{\text {max }}^{\prime}=\sigma_{1}\left(\mathbb{E}\left(S_{\Delta}^{\prime}\right)\right)$

Theorem 1

With $n>N$ and S_{Δ}^{\prime} calculated from a fixed Z^{0}, if the conditions above are satisfied, and \hat{U} is the global optimum of synchronized spectral decomposition, then with probability at least $1-n^{-r}$,

$$
\frac{|\mathcal{M}|}{n} \leq C_{4} K \frac{K \dddot{d}+\dddot{d}^{\frac{1}{2}} \sum_{l=1}^{K} \sigma_{\max }^{\prime}}{\sum_{l=1}^{K}\left(\sigma_{\min }^{\prime}\right)^{2}}
$$

Here \mathcal{M} is the set of misclustered nodes and $N, r, C_{1}, \cdots, C_{4}$ are absolute constants.

Model \& Theory

Remark

In the simple case of the model where $\ddot{P}=0$, consider n growing, if Z^{0} is independent of A with a confusion matrix proportionally constant and $\dddot{B} / \dddot{P}_{\text {max }}$ constant, then the upper bound in Theorem 1 is $O\left(\ddot{d}^{-1 / 2}\right)$.

Simulation results are in the manuscript

Conclusion

- A new method for network community detection that takes as input the observed \triangle 's.
- The new method tries to explain edges in networks not only by affiliation but also by roles in higher order interaction.
- Consistency theory that involves analyzing dependent objects.

Future work:
Other subgraphs, e.g. \bowtie, \diamond, V.

References

Previous methods that use triangles

1 Benson, A. R., Gleich, D. F. and Leskovec, J. (2016). Higher-order organization of complex networks. Science, 353(6295), 163-166.
2 Paul, S., Milenkovic, O. and Chen, Y. (2018). Higher-Order Spectral Clustering under Superimposed Stochastic Block Model. arXiv preprint arXiv:1812.06515.
3 Vandecappelle, M., Boussé, M., Van Eeghem, F. and De Lathauwer, L. (2016). Tensor decompositions for graph clustering. Internal Report, (16-170).

Abundance of subgraphs in real world networks.

4 Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824-827.
5 Mangan, S. and Alon, U. (2003). Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21), 11980-11985.
6 Yaveroğlu, Ö. N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza, R., ... and Pržulj, N. (2014). Revealing the hidden language of complex networks. Scientific reports, 4, 4547.

