Network Community Detection Using Higher Order Interactions

Xianshi Yu Joint work with Ji Zhu Aug 03, 2020

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Table of contents

1 Real Data Observation

3 Method

4 Experiment on lawyers' co-work network

5 Model & Theory

Real Data Observation

. . .

イロト 不得下 イヨト イヨト 二日

2/20

Certain subgraphs are abundant. [4,5,6]

triange: social network; world wide webs by-fan: transcriptional gene regulation network; neural network by-paralle: neural network; food web The pattern of observed subgraphs could reflect the underlying community memberships.

- How to exploit the configuration of \triangle 's in community detection?
- How to model the abundance and distribution of \triangle ?

Notations

• $\{1, 2, \ldots, n\}$ index the nodes.

- $A_{n \times n}$ (adjacency matrix) describes edges of an observed network.
- $A_{ij} = 1$ if nodes *i* and *j* have an edge, $A_{ij} = 0$ otherwise.
- $\Delta_{n \times n \times n}$ represents triangles: $\Delta_{ijk} = 1$ iff nodes i, j and k share a triangle. $\Delta_{ijk} = 0$ otherwise.

$$\star \Delta_{ijk} = A_{ij}A_{jk}A_{jk}$$

Goal

 $\begin{array}{l} \circ \ g_i \in \{1, 2, \ldots, K\} \text{ is the} \\ \text{community index of node } i. \\ \circ \ Z_{n \times K} \text{ is a matrix of all zeros,} \\ \text{except that } Z_{ig_i} = 1 \text{ for all } i. \end{array}$

Ideas

Consider the formation of triangles as depending only on community membership

$$P(\Delta_{ijk} = 1) = C_{g_i,g_j,g_k}$$

i.e.
$$\mathbb{E}(\Delta_{n \times n \times n}) = C_{K \times K \times K} \times_1 Z \times_2 Z \times_3 Z$$

Definition of *n*-mode product • ref

To obtain $C_{K \times K \times K} \times_1 Z_{n \times K}$ Consider mode-1 fibers of *C*

Calculate the products of each mode-1 fiber $C_{.jk}$ and Z, namely $ZC_{.jk}^T$. Arrange the resulted vectors accordingly to form an $n \times K \times K$ tensor.

Remarks

$$\mathbb{E}(\Delta) = C \times_1 Z \times_2 Z \times_3 Z \tag{1}$$

- In Stochastic Block Model (SBM), community structure is on E(A).
- (1) does not define a generative model, but a 'constraint' on network models. SBM satisfies (1).

Ideas

How to infer $g_i, i \in \{1, \ldots, n\}$ from Δ ?

Ideas

- E(Δ) is a block tensor, and slices of it, i.e E(Δ..k), are block
 matrices. Spectral decomposition of E(Δ..k) reveals g_i.
- $\Delta_{..k}$ is likely very sparse.

Method

Algorithm

Input: $A_{n \times n}, K$ Output: \hat{Z}

Step 1. Calculate $\Delta = (A_{i,j}A_{j,k}A_{i,k})_{i,j,k}$

Step 2. Obtain an initial estimate $Z_{n \times K}^0$

- Step 3. Calculate sums of slices of $\Delta_{n \times n \times n}$ w.r.t groups defined by Z^0 . i.e. $S'_{\Delta} := \Delta \times_3 Z^0_{,l}$, for $l \in \{1, \cdots, K\}$.
- Step 4. Apply synchronized spectral decomposition to S'_{Δ} , $l \in \{1, \cdots, K\}$ to obtain $\hat{U}_{n \times K}$
- Step 5. Perform K-means on \hat{U} to obtain \hat{Z}

Method—synchronized spectral decomposition (SynSD)

$$\hat{U} = \operatorname*{arg\,max}_{\substack{U_{n \times K}^{T} U = I}} \sum_{l=1}^{K} \| U^{T} S_{\Delta}^{l} U \|_{F}^{2}$$

- SynSD finds 'shared singular vectors'.
- SynSD is a Grassmann manifold optimization problem, for which ample literature and packages are available.

Experiment on lawyers' co-work network

71 attorneys (1104 edges)

seniority	status	gender	office	age
range:[1,32]	partner:36	man:53	Boston:48	range:[26,67]
median:7	associate:35	woman:18	Hartford:19	median:39
			Providence:4	

practice	law school	
litigation:41	harvard, yale:15	
corporate:30	ucon:28	
	other:28	

Benchmarks

- Normalized Spectral Clustering with regularization (NSC-reg)
- High-Order Clustering [1, 2] (HOC) —perform NSC on $\sum_{k=1}^{n} \Delta_{..k}$

Initial estimate Z^0 of the new method

- HOC
- Attribute of lawyers

Experiment on lawyers' co-work network

Office

Boston

Hartford

Providence practice

Iitigation

corporate

Column 1&2: leading two eigenvectors of NSC-reg and HOC
Column 3: Û of the new method (K = 2)

14/20

Experiment on lawyers' co-work network

 \hat{U} obtained when attributes in bracket are taken as Z^0

Model & Theory

A model that satisfies $\mathbb{E}(\Delta) = C \times_1 Z \times_2 Z \times_3 Z$ — triangle mechanism + edge mechanism

- $T \sim \text{independent Bernoulli with } \overset{\dots}{P}_{n \times n \times n} = \overset{\dots}{B} \times_1 Z \times_2 Z \times_3 Z$
- $\ddot{A} \sim \text{independent Bernoulli with } \ddot{P}_{n \times n}$

•
$$A_{i,j} = \max\{\ddot{A}_{i,j}, \mathbf{1}(\sum_k T_{i,j,k} > 0)\}$$

Model & Theory

Conditions

- $C_1 \ln^4 n \leq \widetilde{d} \leq C_2 n^{\frac{2}{5}}$, where $\widetilde{d} = n^2 \widetilde{P}_{\max}$ $\widetilde{d} \leq C_3 n^{\frac{1}{3}} \widetilde{d}^{\frac{1}{6}}$, where $\widetilde{d} = n \widetilde{P}_{\max}$

Notations

•
$$\sigma'_{\min} = \sigma_{\mathcal{K}}(\mathbb{E}(S'_{\Delta})), \ \sigma'_{\max} = \sigma_1(\mathbb{E}(S'_{\Delta}))$$

Theorem 1

With n > N and S_{Λ}^{l} calculated from a fixed Z^{0} , if the conditions above are satisfied, and \hat{U} is the global optimum of synchronized spectral decomposition, then with probability at least $1 - n^{-r}$,

$$\frac{|\mathcal{M}|}{n} \leq C_4 K \frac{K \ddot{d} + \ddot{d}^{\frac{1}{2}} \sum_{l=1}^{K} \sigma_{\max}^l}{\sum_{l=1}^{K} (\sigma_{\min}^l)^2}$$

Here \mathcal{M} is the set of misclustered nodes and N, r, C_1, \cdots, C_4 are absolute constants.

L7 / 20

Model & Theory

Remark

In the simple case of the model where $\ddot{P} = 0$, consider *n* growing, if Z^0 is independent of *A* with a confusion matrix proportionally constant and \ddot{B}/\ddot{P}_{max} constant, then the upper bound in Theorem 1 is $O(\ddot{d}^{-1/2})$.

Simulation results are in the manuscript

Conclusion

 \circ A new method for network community detection that takes as input the observed \bigtriangleup 's.

 \circ The new method tries to explain edges in networks not only by affiliation but also by roles in higher order interaction.

 $\circ\,$ Consistency theory that involves analyzing dependent objects.

Future work: Other subgraphs, e.g. \bowtie , \diamondsuit , V.

References

Previous methods that use triangles

- 1 Benson, A. R., Gleich, D. F. and Leskovec, J. (2016). Higher-order organization of complex networks. Science, 353(6295), 163-166.
- 2 Paul, S., Milenkovic, O. and Chen, Y. (2018). Higher-Order Spectral Clustering under Superimposed Stochastic Block Model. arXiv preprint arXiv:1812.06515.
- 3 Vandecappelle, M., Boussé, M., Van Eeghem, F. and De Lathauwer, L. (2016). Tensor decompositions for graph clustering. Internal Report, (16-170).

Abundance of subgraphs in real world networks.

- 4 Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824-827.
- 5 Mangan, S. and Alon, U. (2003). Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21), 11980-11985.
- 6 Yaveroğlu, Ö. N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza, R., ... and Pržulj, N. (2014). Revealing the hidden language of complex networks. Scientific reports, 4, 4547.