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Hypergraph data

Overview of my research

Network Data Analysis Signal Processing EHR Data

* Network community detection

* Collaborative filtering using social networks

* Hypergraph data analysis

Yu, X. & Zhu, J. (2023+). Modeling Hypergraphs with Diversity and Heterogeneous Popularity. Major revision at JASA.
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Hypergraph data

Mpmoeens 0 Geoeewie  Cweweds 0 Wew Gl
Hypergraph data—examples

Hypergraph data characterize ‘multi-actor’ relations

Collaborations Shopping orders

paper 1-- Kulesza, A. & Taskar, B. (2012) order 1-- scissors, pencil, cheese, spinach

paper 2-- Brunel, V-E., Moitra, A,, Rigollet, P.,, & Urschel, J. (2017) order 2-- tape, tissues, lemons

paper 8-- Gartrell, M., Paquet, U., & Koenigstein, N. (2017) order 9-- pork, vitamins, pan, lock, brush

Medical codes in electronic health records  Ingredients in cooking recipes
(EHR) recipe 1-- 3, B 7 & @

patient visit 1-- J44.9, J45.9, B44.9, 060, L50.5 recipe 2-- @, ©, &, [

patient visit 2-- J45.9, J46, 060, L50.5

recipe 8-- 55 , vf:, -i, 0 , )
patient visit 7-- Z11.52, 720.822, 786.16, U07.1, J12.82
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Hypergraph data

Hypergraph data—concepts

r(‘,‘,‘)q_edge

X (hyperedge)
(@, )

node

hypergraph< 2:’ ‘, :,)‘)
(1. @)
(@ )

A hypergraph is a collection of sets.

Electronic health records (EHR)
J44.9, 145.9, B44.9, 060, L50.5 4— edge = patient visit

J45.9, 146, 060, L50.5
o\

node = medical code
Z11.52,720.822,786.16, U07.1, J12.82

Cooking recipes
J B Z # @ < edge = recipe

Q9 ¥ [
o\

node = ingredient

LYLISNQ
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Hypergraph data

Hypergraph data — what can we learn from it?

Row = edge = recipe 2-D embedding
Node = ingredient A E%
recipe 1 (J, ig, # @) 034 —A-is - @
recipe 2 ( : ¥ v o
recipe 3 (% , j, W) I ! 52
|
recipe 4 01--=-"Fopeo-
TS
recipe 5 ( |
0.1

 Node embedding, e.g., ©=(0.1,0.3), @:(0.1, 0.1)

enables clustering
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Hypergraph data

Hypergraph data — what can we learn from it?

Row = edge = patient visit Regression
r

Node = medical code

visit 1 (J44.9, J45.9, B44.9, 060, L50.5)

visit 2 (J45.9, J46, 060, L50.5)
‘ heart failure
visit 3(7211.52, 720.822)
visit 4 (286.16, U07.1, J12.82) n patients <
visit 5 (060, L50.5) .

d-dimensional vector derived from
patient’s medical codes

* Node embedding

enables clustering regression, can preserve privacy

* Edge prediction, e.g., (¥, J, @, ?)
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Hypergraph data

Gap in literature on hypergraph modeling

In practice, hypergraph data are often projected to a network (i.e., pairwise relations),
causing information loss. Direct modeling of hypergraph data is a relatively open area.

e.g., to allow recipes to
have different
numbers of ingredients

$ $

e.g., to allow the same set of
medical codes be observed in
multiple patient visits

Edges with Edge
varying cardinality —multiplicity

Model characteristic

Ghoshdastidar and Dukkipati (2014,
2015, 2017b); Chien et al. (2018); Kim
et al. (2018); Ke et al. (2019)

Lyu et al. (2021); Yuan and Qu (2021)

Clustering of nodes

Latent space model

Stasi et al. (2014) v B-model

Zhang and McCullagh (2015) v Hereditary hypergraph

Lunagémez et al. (2017) v Random geometric graph

Ghoshdastidar and Dukkipati (2017a) v Clustering of nodes

Turnbull et al. (2019) v Latent space model

Zhen and Wang (2021) v Clustering and latent
position of nodes

Chodrow et al. (2021) v v Clustering of nodes

Ng and Murphy (2021) v v Clustering of hyperedges

Yu and Zhu (2023 +) v v Latent space model
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Hypergraph data

Gap in literature on hypergraph modeling

In practice, hypergraph data are often projected to a network (i.e., pairwise relations),
causing information loss. Direct modeling of hypergraph data is a relatively open area.

Up next: the proposed model

v General types of hypergraphs

e edges can have varying numbers of nodes
e agiven edge can appear more than once

v/ Node embedding
v Edge prediction
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Model & Method

Model — notation

Notation

VY ={1,2,..,n,}is the set of all nodes.
Each observed edge is a subset of V.
e1, ---, én, denote all edges.

Thus, there are n, nodes and n, edges.

V={0.0.0. .6}

e1=(0.0.@)

e;= (@, )

e:= (@ ©.@) W =t —6
€4 = (""."") 7 e
es= (1, @)

es= (@, )
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Model & Method

Model — motivations from real-world observations

Diversity within each edge

*  Nodes in an edge often complement each other,
e.q., different expertise in a collaboration.

* Diversity also appears when selections are made to prevent redundancy,
e.qg., products of various categories in a shopping order.

Heterogeneous node popularity

* Different nodes appear with very different frequencies.

10/29



Model & Method

Model — how to encourage diversity and heterogeneity?

Diversity
* Each node is represented by a vector of latent features
* An edge contains multiple nodes

* Prob[observing an edge] is large when the corresponding set of
vectors have different “directions”

(QON) vs (B,9,2

Heterogeneous popularity
* Each node is associate with a popularity parameter

* Prob[observing an edge] is large when nodes in the edge have large
popularity parameters

@ 0, vs (,00,.., &)

oyster egg
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Model & Method

Model — how to encourage diversity and heterogeneity?

latent feature vector popularity parameter

Y pe—
7, = (viy, Vi, 0,...,0,a;,0,..0) for node i

How to use 7;?

* Let E denote a random edge. P(E = {i,j}) « areaz(ﬁi,ﬁj) =v2 5,
P(E = {i,j}) is large when ¥;, ; are long

e
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Model & Method

Model — how to encourage diversity and heterogeneity?

latent feature vector popularity parameter

Y —
7, = (viy, ~> V¢, 0,...,0,a;0,...0) for node i

How to use ¥;?

* Let E denote a random edge. P(E = {i,j}) x areaz(ﬁi,ﬁj) =Uii 5,

P(E = {i,j}) is large when ¥;, ; are long and have separated directions,
i.e., as close to orthogonal as possible.

/ VS
>
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Model & Method

Model — how to encourage diversity and heterogeneity?

latent feature vector popularity parameter

|

[
U; = (Uu,; ey Uil 0,..,0,a;0 O) for node i

¥ }
live on a sphere pairwise orthogonal

How to use ¥;?

» Let E denote a random edge. P(E = {i,j}) o area?(¥;, 17]-) =7 -

’Uj‘

P(E = {i,j}) is large when #;, ; are long and have separate directions, i.e.,
as close to orthogonal as possible.

* Il v Iz is constant across i, a; > 0 is the ith entry of (0, ..., 0,a;, 0, ...0)1xp,

» The lengths are driven by the popularity parameters a;, q;

» The separation is mainly driven by the ‘diversity” of the feature vectors v;, v;

° P(E = {i,j; k}) (0.8 VOllll’Ile2 (ﬁir 77], ﬁk) = %k
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Model & Method

Model — nice properties

The random edge E can be any subset e of V, e.g., e = {1,3},e = {1,3,5,7}.

volume?(%;|i € e)

P(E =¢e) =
volume?(;|i € )

ercV
Observed edges eq, vy €p, ArE i.i.d realizations of P.

Nice properties

* Explicit formulas for marginal probability & conditional probability
o P(i€E) eg,P(®€EE)
o PlecE),eg,P((®.@®.@®) CE)
o P(E=¢e'lecE)eg,P(E=(00.@) | (@) ckE)

* Easy-to-apply sampling algorithm

 Distribution of |E| has an explicit characterization
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Model & Method

Method
Model fitting
* Maximum likelihood estimation (MLE)
o 1 o _
argmax  — log Z volume? (7; | i € €') + — Zlog volume?® (v; | i € €;)
v;€Rd a;>0,v; 1 =y Ne 7 | }
is constant across ¢ \ } Y
| determinant of a matrix
determinant of a matrix defined by v;, a; for i in g

defined by v;, a; for all i

* Gradient descent algorithm
o Accelerated projected gradient methods for nonconvex
programming T
o Mini batch gradient descent, i.e., using a small sample of edges in
each iteration, and Adam adaptive learning rate

T 1i & Lin (2015) NeurlPS
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Numerical results

Simulations (consistency)

Model setting: n,=100,d = 2,n, = 2000

(@) vyq,...v, (b) aty,...,0t, (c) Hyperedge cardinality lel
Y v 1000 - ]
1.0- ® © Oag, 20- |
o’ ~N . 750~
0.5- s = !
' o Y 15- § 500 |
(] . € ° |
0.0- 3 - 250 -
s ! g1 | I
[ ]
os % o 5- % 3 23 4 6 8 7 3
o
\.. o
-1.0- S o 0-
-1.0 -0.5 0.0 0.5 1.0 0.00 0.01 0.02 0.03 0.04 I empirical mean theoretical mean

Results of 50 repeated simulations: n,=100,d = 2, 3,4

v o

1.0- + 1.0- ’

08- * * 0.8- +$ .
5 . 5
5 06- é * . 5 06- + *
Q ’ : 2 ¢ + + *
S 04- T 04- i i ;
B t e g m B LI Y

02- 0.2-

0.0 0.0-

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Ne Ne
v; B d=4 B d=3 8 d=2

2
T a,=a;,a= (al, ...,anv);Vi_ =

1ill2” 16/29



Numerical results

Simulation (clustering performance)

Evaluating clustering performance
* n, = 100 nodes are assigned to three even clusters.

* v;’s are on the unit sphere in R3 and are generated by three von
Mises—Fisher distributions.

color = true cluster label; n, = 2000 Clustering results

| A \ 1.0-
. 09- * * T
1.0~ o & )
_ : a‘:" . p. 5‘_ 2.3_ . -
0.5~ ...: b ° o 0.5~ .,‘p.. o 0:6- . .
[ 4 \ e ' L4 05-
0.0- @ ® "o = o, 0.0 ® e : : .
':53 %% ~ B L& 0.4-
-05 oo o y o4 . 05 ) 0.3-
s, 02- B Accuracy
e . , . 0.1~ é B NMI
05 / \ -05 -05 / \ =05 0.0-
0.0 o \ 0.0 0.0 / \ 0.0 ' ] ' 1 1 1 ] [
0.5 0.5 05 05 2000 400 600 800 1000 1200 1400 1600
Ne
V1, > V100 D1, > V100 Clustering result as n, varies

* NMI = normalized mutual information

17/29



Numerical results

Numerical results — recipe data

Recipes on Yummly.com

n, = 2673 recipes involving n,, = 906 ingredients; fit a model with d = 3

Estimated latent vectors ¥; (embeddings)
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Numerical results

Numerical results — recipe data

Recipes on Yummly.com

n, = 2673 recipes involving n,, = 906 ingredients; fit a model with d = 3

Applications of the fitted model

* Clustering ingredients using embedding ¥;’s, which lie on a sphere in R3

90°

Clustering method: fit a mixture of von Mises—Fisher model (i.e., analogy to Gaussian on a sphere) on embeddings of ingredients
that appear in 10+ recipes (298 ingredients in total)
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Numerical results

Numerical results — recipe data

Recipes on Yummly.com

n, = 2673 recipes involving n,, = 906 ingredients; fit a model withd = 3

Applications of the fitted model

* Clustering ingredients using embedding ?;’s, which lie on a sphere in R3

90°

Carbohydrates

270°

Clustering method: fit a mixture of von Mises—Fisher model (i.e.,

that appear in 10+ recipes (298 ingredients in total)

chinesg@noodles

spa@petti
brow@ rice
hoisin@gauce
all-purp@se flour dumpling@nrappers

jalaper@ chilies

egg ropwra fl
99 1@ Ped pep@r flakes lo meir@poodles

analogy to Gaussian on a sphere) on embeddings of ingredients
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Numerical results

Numerical results — recipe data

Recipes on Yummly.com

n, = 2673 recipes involving n,, = 906 ingredients; fit a model with d = 3

Applications of the fitted model

* Clustering ingredients using embedding D;’s, which lie on a sphere in R3

90°

e o Proteins
135° | .\
/ \ frozeApeas
/"'/ > “A \\ b&f
“a pork sloulder
| porkdbelly
f AL \ cookedachicken
1800+ L & . I )
< o o “_w'y o . _large #hrimp
TR Y ground chiakenRHRRRIS DS
edgs
. /, creamdeheese poriébutt
\
pork#hops
S .

270°

Clustering method: fit a mixture of von Mises—Fisher model (i.e., analogy to Gaussian on a sphere) on embeddings of ingredients
that appear in 10+ recipes (298 ingredients in total) ]_8/29



Numerical results

Numerical results — recipe data

Recipes on Yummly.com

n, = 2673 recipes involving n,, = 906 ingredients; fit a model with d = 3

Applications of the fitted model

* Clustering ingredients using embedding D;’s, which lie on a sphere in R3

90°

. _\ Proteins (meats)

// o ™
A
/ AA
flanigsteak
‘II R - “\l
1 ® ‘e ’:v&mw e pork tefyderloin
\ 4 | pk
\ L) ’ 5 4 / Pe
‘ / chigken
‘\\‘\ I//‘/‘
: /
225° 315
\\ >

Clustering method: fit a mixture of von Mises—Fisher model (i.e., analogy to Gaussian on a sphere) on embeddings of ingredients
that appear in 10+ recipes (298 ingredients in total) 18/29



Numerical results

Numerical results — recipe data

Recipes on Yummly.com

n, = 2673 recipes involving n,, = 906 ingredients; fit a model with d = 3

Applications of the fitted model

e Clustering ingredients using embedding ¥;’s, which lie on a sphere in R3

90°

L e Seasonings
135 . \< ren
| \
/ ada \
L. “
] Y :
| ¥ O o

270°

Clustering method: fit a mixture of von Mises—Fisher model (i.e., analogy to Gaussian on a sphere) on embeddings of ingredients
that appear in 10+ recipes (298 ingredients in total) 18/29



Numerical results

Numerical results — recipe data

Applications of the fitted model

 Completing recipes
ceg, (v @ 0,0, 2)

e

> selected=c("pork belly","green bell pepper","cooking oil","soy sauce","sugar")

> recommend_one_ingredient(L_hat,selected,ingredients)

Knowing that a recipe has (PORK BELLY, GREEN BELL PEPPER, COOKING OIL, SOY SAUCE, SUGAR),
the one additional ingredient that is most likely to be in this recipe is GARLIC.

arg max P(’L - E|6 C E) P is parameterized by
ide | D; and @; for all i

!
The probability that ingredient i isin a
recipe, given that ingredients in the
selected set e are in the recipe
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Theory
Theory — consistency

Proposition (ldentifiability)

If n, > 2d, then, given any fixed model, a = (ay,--- ,ay,,) is
identifiable and vy, - - - ,v,, are identifiable up to a shared rotation
and individual sign flips (i.e., multiplication with £1).

Theorem 1 (Consistency)

If n, > 2d and {vy,---,v,,} span R?, then, as n, — oo, with
proper rotation and sign flips of 7;
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Theory — asymptotic distribution

Parameterize the model using matrix L

* The proposed model is a special determinantal point process (DPP)

* A DPP is defined using a matrix L (L can be any semi-definite matrix)

* Forthepwoposedrnodehl,::(vgﬁg)?;zl-+cﬁag(af“",a%v)

Theorem 2 (Asymptotic normality)

If n, > 2d, {vq,--,v,,} span R% and can not be divided into
multiple groups that are mutually orthogonal, then, as n, — oo,
with proper sign flips of 9;, ||[L — L||[r — 0 in probability and

Ve -vec(T — L) 25 N (0,%).

Here X is a matrix that we have derived which is defined by v;, a;,
1e V.
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Theory — asymptotic result (challenges)

* This asymptotic result is one regarding constrained M-estimation,
since the parameter space of L is special.

* The theoretical development requires non-trivial analysis of the
local geometry of this parameter space, where we applied recent
results in variational geometry.

* This is the first asymptotic result, to our knowledge, for structured
determinantal point processes.
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Take home messages

* The proposed model is the first hypergraph model that

o considers diversity

o enables embedding while allowing edges to have different
numbers of nodes and to appear more than once in data

* The model can be applied for

o node embedding
o node clustering
o edge prediction

* We have established the consistency and asymptotic normality of
the estimates of model parameters.

Ornes, Stephen. "How Big Data Carried Graph Theory Into New Dimensions." Quanta Magazine (Aug 2021).
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https://www.quantamagazine.org/how-big-data-carried-graph-theory-into-new-dimensions-20210819/

Future work

Planned future work on hypergraph data

e = row = node set Y

Develop regression model on node set (0.0.0) (55)
* Consider y = f(e) fore € V and estimate f (@) 2
A (.$ 1.1.) 7.7

* e.g., f predicts quality of collaboration for a given (0.0.0) i
team, future medical needs given current medical (" @) .

codes (@, ) |

Extend the hypergraph model to incorporate
* observed covariates of nodes
* more complex mechanism beside diversity and popularity

* information on nodes’ different roles within edges
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Future work

Planned future work on hypergraph data

Application to distributed EHR data network

Privacy
protection

Data from
Medical

multiple code Data
healthcare harmonization

systems

embedding

Model
transfer
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Thank you
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Appendix — simulations (asymptotic normality)

Results of 500 repeated simulations: n,=100, d = 2,n, = 3000

Data quantiles

Data quantiles

A
L1 - Ly
0.6-
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-0.3-
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-2 0 2
Normal theoretical quantiles

A
o1 — 0y
0.010-
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N
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A
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[ ]
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-0.015- . 1 1
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N
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°
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Normal theoretical quantiles

A

0.010- .
0.005 -
0.000-

-0.005 -

°
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Normal theoretical quantiles

29/29



Appendix — simulations (asymptotic normality)

Results of 500 repeated simulations: n,=100, d = 2,n, = 3000
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