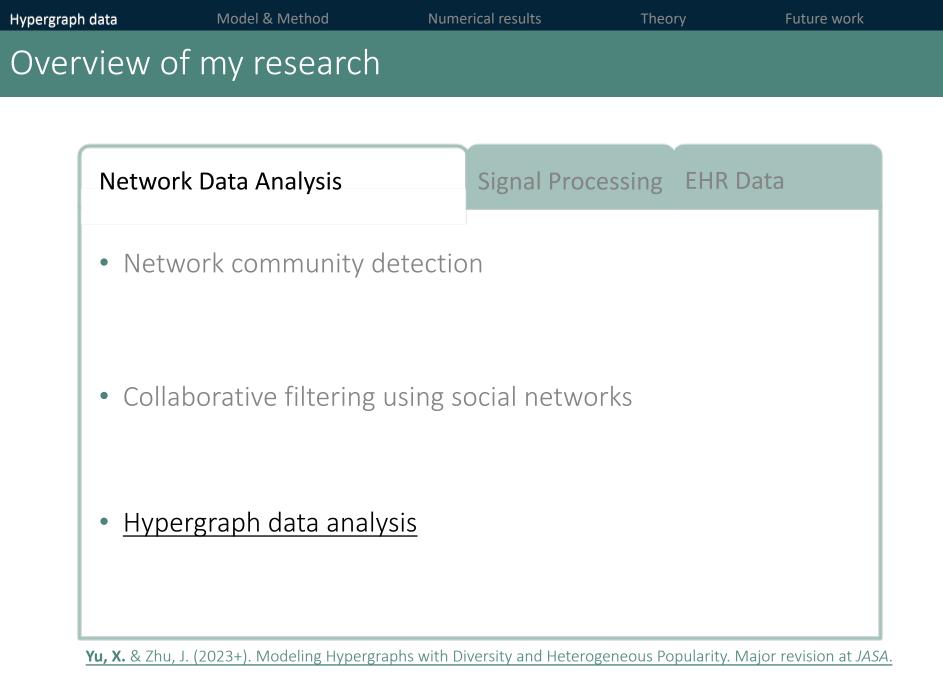
# Modeling Hypergraph Data with Diversity

# Xianshi Yu

Department of Computer Science University of Wisconsin-Madison

July 20, 2023 StatsNet Seminar, São Carlos



2/29

• • •

...

# Hypergraph data—examples

## Hypergraph data characterize 'multi-actor' relations

#### Collaborations

paper 1-- Kulesza, A. & Taskar, B. (2012)

paper 2-- Brunel, V.-E., Moitra, A., Rigollet, P., & Urschel, J. (2017)

paper 8-- Gartrell, M., Paquet, U., & Koenigstein, N. (2017)

# Medical codes in electronic health records (EHR)

patient visit 1-- J44.9, J45.9, B44.9, O60, L50.5 patient visit 2-- J45.9, J46, O60, L50.5

patient visit 7-- Z11.52, Z20.822, Z86.16, U07.1, J12.82

#### Shopping orders

...

- order 1-- scissors, pencil, cheese, spinach
- order 2-- tape, tissues, lemons

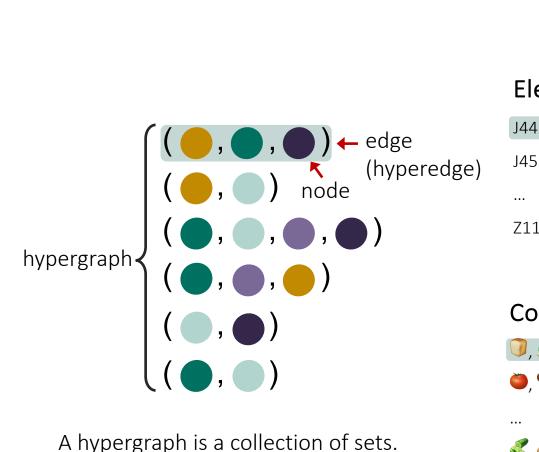
order 9-- pork, vitamins, pan, lock, brush

#### Ingredients in cooking recipes

| recipe 1 🤍, 🌽, 🌮, 🥭, 🍑       |
|------------------------------|
| recipe 2 🥮, 📎, 🥶, 🃋          |
|                              |
| recipe 8 💐 🖉 , 🍋 , 🌛 , 🧂 , 🥃 |

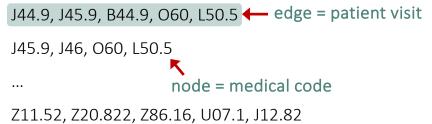
Numerical results

# Hypergraph data—concepts



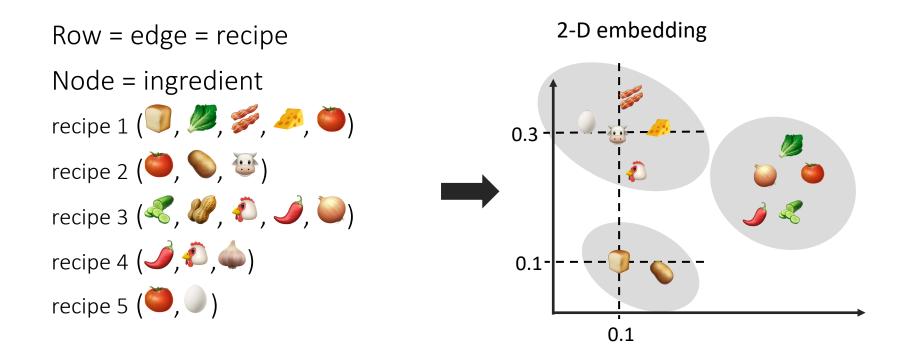
A hypergraph is a collection of sets.

#### Electronic health records (EHR)



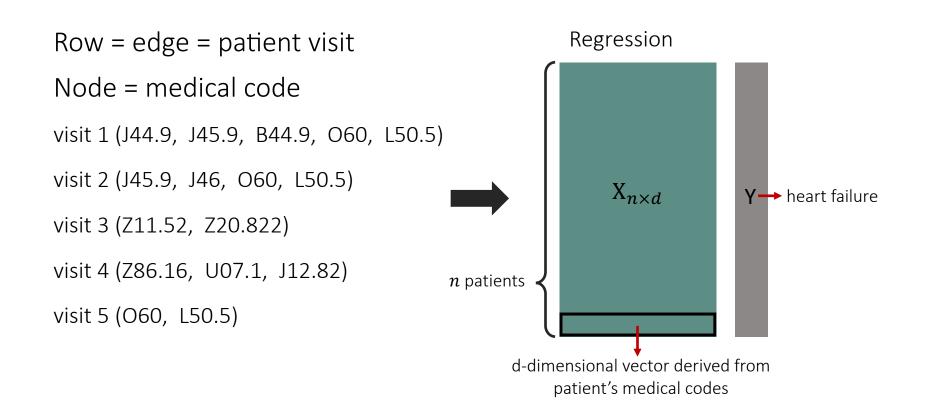
## Cooking recipes 🚺 , 💋 🌮 , 🧈 , 🍋 🔶 edge = recipe i 🕘, 📎, 🥶, 📋 node = ingredient 💐 , 🖉 , 🍋 , 🌛 , 🧂 , 🦢

#### 4/29



 Node embedding, e.g., <sup>™</sup>=(0.1,0.3), <sup></sup>=(0.1, 0.1) enables clustering

# Hypergraph data – what can we learn from it?



- Node embedding enables clustering, regression, can preserve privacy
- Edge prediction, e.g., (<sup>™</sup>, *→*, *↓*, ?)

# Gap in literature on hypergraph modeling

In practice, hypergraph data are often projected to a network (i.e., pairwise relations), causing information loss. Direct modeling of hypergraph data is a relatively open area.

| have diffe                                                                                                | e.g., to allow recipes to<br>have different<br>numbers of ingredients |                      | w the same set of<br>les be observed in<br>tient visits  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|----------------------------------------------------------|
|                                                                                                           | Edges with<br>varying cardinality                                     | Edge<br>multiplicity | Model characteristic                                     |
| Ghoshdastidar and Dukkipati (2014, 2015, 2017b); Chien et al. (2018); Kim et al. (2018); Ke et al. (2019) |                                                                       |                      | Clustering of nodes                                      |
| Lyu et al. (2021); Yuan and Qu (2021)                                                                     |                                                                       |                      | Latent space model                                       |
| Stasi et al. (2014)                                                                                       | $\checkmark$                                                          |                      | $\beta$ -model                                           |
| Zhang and McCullagh (2015)                                                                                | $\checkmark$                                                          |                      | Hereditary hypergraph                                    |
| Lunagómez et al. $(2017)$                                                                                 | $\checkmark$                                                          |                      | Random geometric graph                                   |
| Ghoshdastidar and Dukkipati (2017a)                                                                       | $\checkmark$                                                          |                      | Clustering of nodes                                      |
| Turnbull et al. (2019)                                                                                    | $\checkmark$                                                          |                      | Latent space model                                       |
| Zhen and Wang (2021)                                                                                      | $\checkmark$                                                          |                      | Clustering and <b>latent</b><br><b>position</b> of nodes |
| Chodrow et al. (2021)                                                                                     | $\checkmark$                                                          | $\checkmark$         | Clustering of nodes                                      |
| Ng and Murphy (2021)                                                                                      | $\checkmark$                                                          | $\checkmark$         | Clustering of hyperedges                                 |
| Yu and Zhu (2023 +)                                                                                       | $\checkmark$                                                          | $\checkmark$         | Latent space model                                       |

# Gap in literature on hypergraph modeling

In practice, hypergraph data are often projected to a network (i.e., pairwise relations), causing information loss. Direct modeling of hypergraph data is a relatively open area.

# Up next: the proposed model

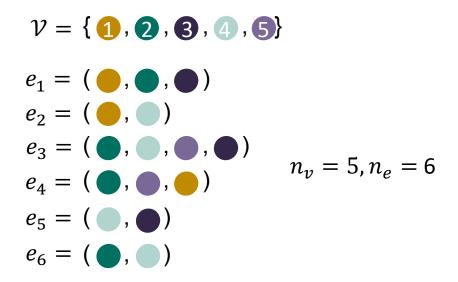
- ✓ General types of hypergraphs
  - edges can have varying numbers of nodes
  - a given edge can appear more than once

✓ Node embedding

✓ Edge prediction

# Notation

 $\mathcal{V} = \{1, 2, ..., n_v\}$  is the set of all nodes. Each observed edge is a subset of  $\mathcal{V}$ .  $e_1, ..., e_{n_e}$  denote all edges. Thus, there are  $n_v$  nodes and  $n_e$  edges.



# Model — motivations from real-world observations

### Diversity within each edge

- Nodes in an edge often complement each other, *e.g., different expertise in a collaboration*.
- Diversity also appears when selections are made to prevent redundancy, *e.g., products of various categories in a shopping order*.

### Heterogeneous node popularity

• Different nodes appear with very different frequencies.

### Diversity

- Each node is represented by a vector of latent features
- An edge contains multiple nodes
- Prob[observing an edge] is large when the corresponding set of vectors have different "directions"



Heterogeneous popularity

- Each node is associate with a popularity parameter
- Prob[observing an edge] is large when nodes in the edge have large popularity parameters

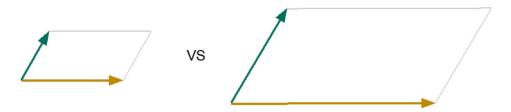


latent feature vector popularity parameter  

$$\tilde{v}_i = (v_{i1,,\dots,v_{id}}, v_{id}, 0, \dots, 0, a_i, 0, \dots 0)$$
 for node *i*

How to use  $\tilde{v}_i$ ?

• Let *E* denote a random edge.  $P(E = \{i, j\}) \propto \operatorname{area}^2(\tilde{v}_i, \tilde{v}_j) = \underbrace{\tilde{v}_i}_{\tilde{v}_j}$  $P(E = \{i, j\})$  is large when  $\tilde{v}_i, \tilde{v}_j$  are long





latent feature vector popularity parameter  

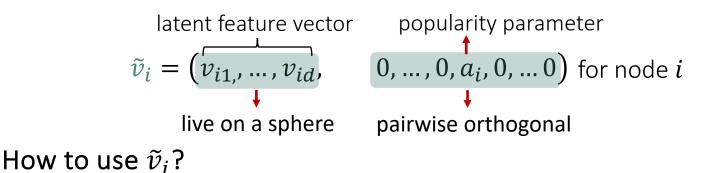
$$\tilde{v}_i = (v_{i1,,\dots,v_{id}}, v_{id}, 0, \dots, 0, a_i, 0, \dots 0)$$
 for node *i*

How to use  $\tilde{v}_i$ ?

• Let *E* denote a random edge.  $P(E = \{i, j\}) \propto \operatorname{area}^2(\tilde{v}_i, \tilde{v}_j) = \underbrace{\tilde{v}_i}_{\tilde{v}_j}$  $P(E = \{i, j\})$  is large when  $\tilde{v}_i, \tilde{v}_j$  are long and have separated directions, i.e., as close to orthogonal as possible.







• Let *E* denote a random edge.  $P(E = \{i, j\}) \propto \operatorname{area}^2(\tilde{v}_i, \tilde{v}_j) = \underbrace{\tilde{v}_i}_{\tilde{v}_j}$  $P(E = \{i, j\})$  is large when  $\tilde{v}_i, \tilde{v}_j$  are long and have separate directions, i.e., as close to orthogonal as possible.  $\widetilde{v}_i = \underbrace{\tilde{v}_i}_{\tilde{v}_k}$ 

•  $\| v_i \|_2$  is constant across  $i, a_i > 0$  is the *i*th entry of  $(0, \dots, 0, a_i, 0, \dots, 0)_{1 \times n_v}$ 

 $\succ$  The lengths are driven by the **popularity** parameters  $a_i$ ,  $a_j$ 

> The separation is mainly driven by the 'diversity' of the feature vectors  $v_i, v_j$ 

• 
$$P(E = \{i, j, k\}) \propto \text{volume}^2(\tilde{v}_i, \tilde{v}_j, \tilde{v}_k) = \widetilde{v}_i / \widetilde{v}_k$$

 Hypergraph data
 Model & Method
 Numerical results
 Theory
 Future work

 Model — nice properties

The random edge E can be any subset e of  $\mathcal{V}$ , e.g.,  $e = \{1,3\}, e = \{1,3,5,7\}$ .

$$P(E = e) = \frac{\text{volum}e^2(\tilde{v}_i | i \in e)}{\sum_{e' \in \mathcal{V}} \text{volum}e^2(\tilde{v}_i | i \in e')}$$

Observed edges  $e_1, \ldots, e_{n_e}$  are i.i.d realizations of P.

## Nice properties

• Explicit formulas for marginal probability & conditional probability

∘ 
$$P(i \in E)$$
, e.g.,  $P( \bullet \in E)$ 

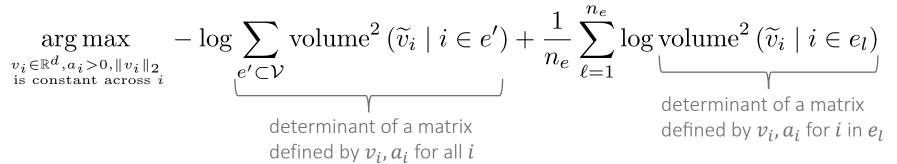
$$\circ$$
 P(e ⊂ E), e.g., P((●, ●, ●) ⊂ E)

∘  $P(E = e' | e \subset E)$ , e.g.,  $P(E = ( \bullet, \bullet, \bullet) | (\bullet) \subset E)$ 

- Easy-to-apply sampling algorithm
- Distribution of |E| has an explicit characterization

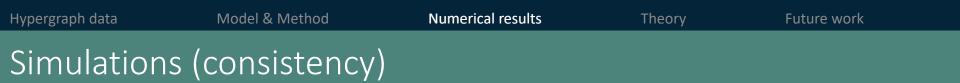
# Model fitting

• Maximum likelihood estimation (MLE)

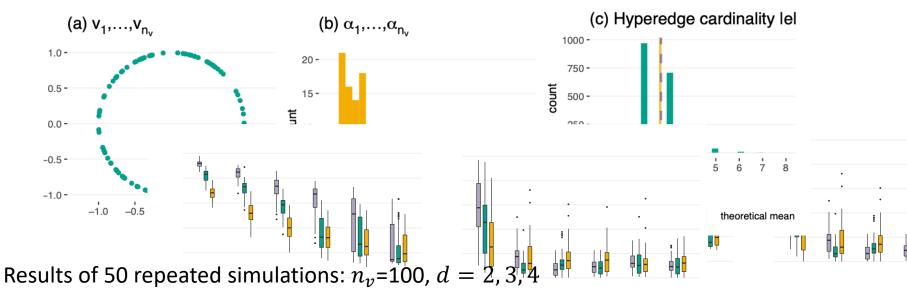


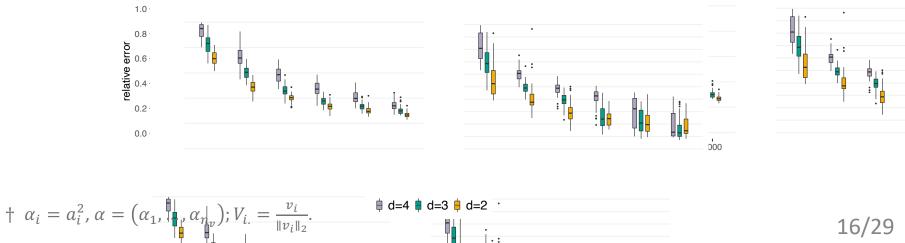
- Gradient descent algorithm
  - Accelerated projected gradient methods for nonconvex programming <sup>†</sup>
  - Mini batch gradient descent, i.e., using a small sample of edges in each iteration, and Adam adaptive learning rate

<sup>†</sup> Li & Lin (2015) NeurIPS









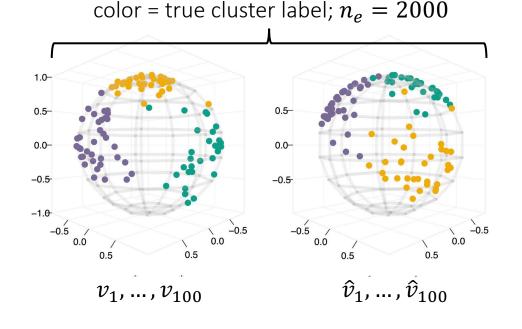
• :

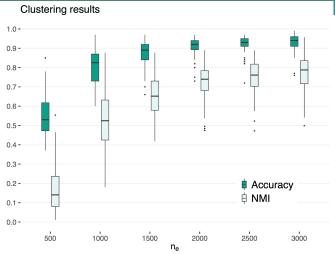
16/29



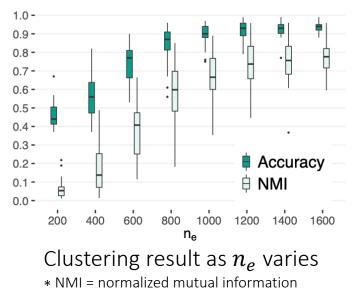
Evaluating clustering performance

- $n_{v} = 100$  nodes are assigned to three
- $v_i$ 's are on the unit sphere in  $\mathbb{R}^3$  and an Mises–Fisher distributions.





#### **Clustering results**

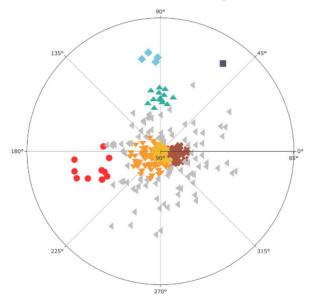




Recipes on Yummly.com

 $n_e = 2673$  recipes involving  $n_v = 906$  ingredients; fit a model with d = 3

Estimated latent vectors  $\hat{v}_i$  (embeddings)

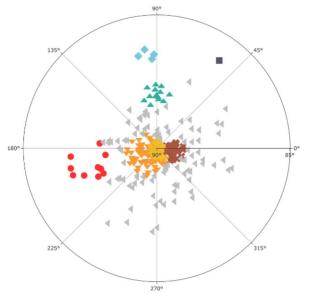


#### Recipes on Yummly.com

 $n_e = 2673$  recipes involving  $n_v = 906$  ingredients; fit a model with d = 3

#### Applications of the fitted model

• Clustering ingredients using embedding  $\hat{v}_i$ 's, which lie on a sphere in  $\mathbb{R}^3$ 

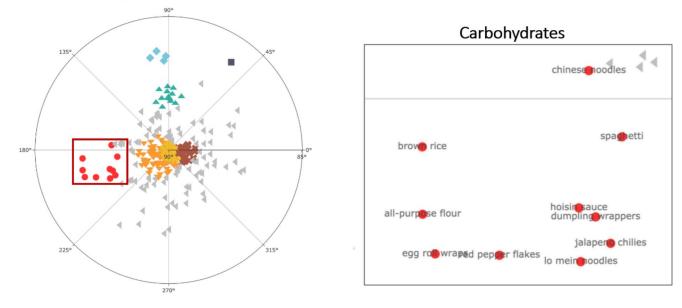


#### Recipes on Yummly.com

 $n_e = 2673$  recipes involving  $n_v = 906$  ingredients; fit a model with d = 3

#### Applications of the fitted model

• Clustering ingredients using embedding  $\hat{v}_i$ 's, which lie on a sphere in  $\mathbb{R}^3$ 

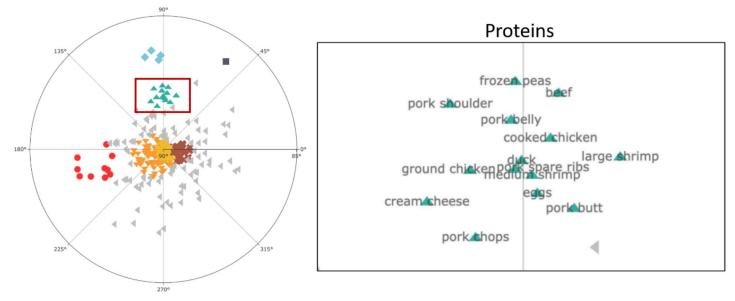


Recipes on Yummly.com

 $n_e = 2673$  recipes involving  $n_v = 906$  ingredients; fit a model with d = 3

#### Applications of the fitted model

• Clustering ingredients using embedding  $\hat{v}_i$ 's, which lie on a sphere in  $\mathbb{R}^3$ 

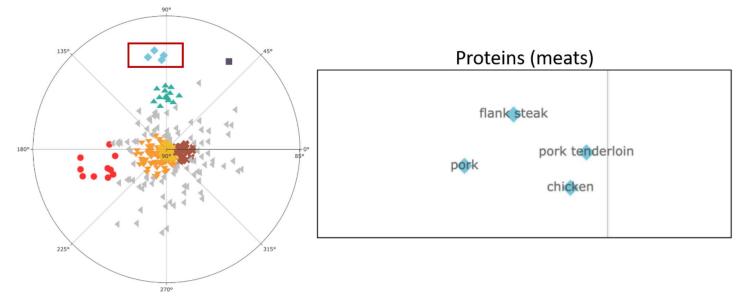


Recipes on Yummly.com

 $n_e = 2673$  recipes involving  $n_v = 906$  ingredients; fit a model with d = 3

#### Applications of the fitted model

• Clustering ingredients using embedding  $\hat{v}_i$ 's, which lie on a sphere in  $\mathbb{R}^3$ 

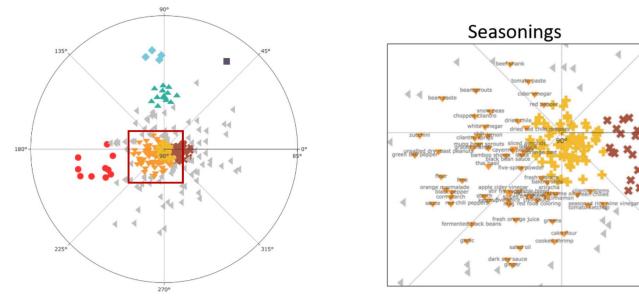


Recipes on Yummly.com

 $n_e = 2673$  recipes involving  $n_v = 906$  ingredients; fit a model with d = 3

#### Applications of the fitted model

• Clustering ingredients using embedding  $\hat{v}_i$ 's, which lie on a sphere in  $\mathbb{R}^3$ 



Applications of the fitted model

• Completing recipes

> selected=c("pork belly","green bell pepper","cooking oil","soy sauce","sugar")
> recommend\_one\_ingredient(L\_hat,selected,ingredients)

Knowing that a recipe has (PORK BELLY, GREEN BELL PEPPER, COOKING OIL, SOY SAUCE, SUGAR), the one additional ingredient that is most likely to be in this recipe is GARLIC.

$$\underset{i \notin e}{\operatorname{arg\,max}} \ \widehat{P}(i \in E | e \subset E)$$

 $\widehat{P}$  is parameterized by  $\widehat{v}_i$  and  $\widehat{a}_i$  for all i

The probability that ingredient *i* is in a recipe, given that ingredients in the selected set *e* are in the recipe

## Proposition (Identifiability)

If  $n_v > 2d$ , then, given any fixed model,  $a = (a_1, \dots, a_{n_v})$  is identifiable and  $v_1, \dots, v_{n_v}$  are identifiable up to a shared rotation and individual sign flips (i.e., multiplication with  $\pm 1$ ).

## Theorem 1 (Consistency)

If  $n_v > 2d$  and  $\{v_1, \dots, v_{n_v}\}$  span  $\mathbb{R}^d$ , then, as  $n_e \to \infty$ , with proper rotation and sign flips of  $\hat{v}_i$ 

$$\sum_{i=1}^{n_v} \|\hat{v}_i - v_i\|_2 \stackrel{p}{\longrightarrow} 0,$$
$$\|\hat{a} - a\|_2 \stackrel{p}{\longrightarrow} 0.$$

Numerical results

# Theory — asymptotic distribution

# Parameterize the model using matrix L

- The proposed model is a special determinantal point process (DPP)
- A DPP is defined using a matrix *L* (*L* can be any semi-definite matrix)
- \* For the proposed model,  $L = (v_i^T v_j)_{i,j=1}^{n_v} + \text{diag}(a_1^2, ..., a_{n_v}^2)$

## Theorem 2 (Asymptotic normality)

If  $n_v > 2d$ ,  $\{v_1, \dots, v_{n_v}\}$  span  $\mathbb{R}^d$  and can not be divided into multiple groups that are mutually orthogonal, then, as  $n_e \to \infty$ , with proper sign flips of  $\hat{v}_i$ ,  $\|\hat{L} - L\|_F \to 0$  in probability and

$$\sqrt{n_e} \cdot \operatorname{vec}(\widehat{L} - L) \xrightarrow{dist.} N(\mathbf{0}, \Sigma).$$

Here  $\Sigma$  is a matrix that we have derived which is defined by  $v_i$ ,  $a_i$ ,  $i \in \mathcal{V}$ .

# Theory — asymptotic result (challenges)

- This asymptotic result is one regarding **constrained** M-estimation, since the **parameter space** of *L* is **special**.
- The theoretical development requires non-trivial analysis of the local geometry of this parameter space, where we applied recent results in variational geometry.
- This is the **first** asymptotic result, to our knowledge, for **structured determinantal point processes**.

| Hypergraph data | Model & Method | Numerical results | Theory | Future work |
|-----------------|----------------|-------------------|--------|-------------|
| Take home m     | essages        |                   |        |             |

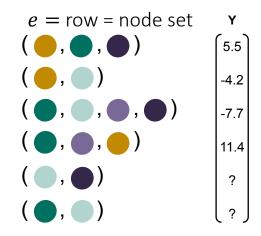
- The proposed model is the **first** hypergraph model that
  - considers diversity
  - enables embedding while allowing edges to have different numbers of nodes and to appear more than once in data
- The model can be applied for
  - node embedding
  - $\circ$  node clustering
  - edge prediction
- We have established the **consistency** and **asymptotic normality** of the estimates of model parameters.

Ornes, Stephen. "How Big Data Carried Graph Theory Into New Dimensions." Quanta Magazine (Aug 2021).

# Planned future work on hypergraph data

Develop regression model on node set

- Consider y = f(e) for  $e \subset \mathcal{V}$  and estimate f
- e.g.,  $\hat{f}$  predicts quality of collaboration for a given team, future medical needs given current medical codes



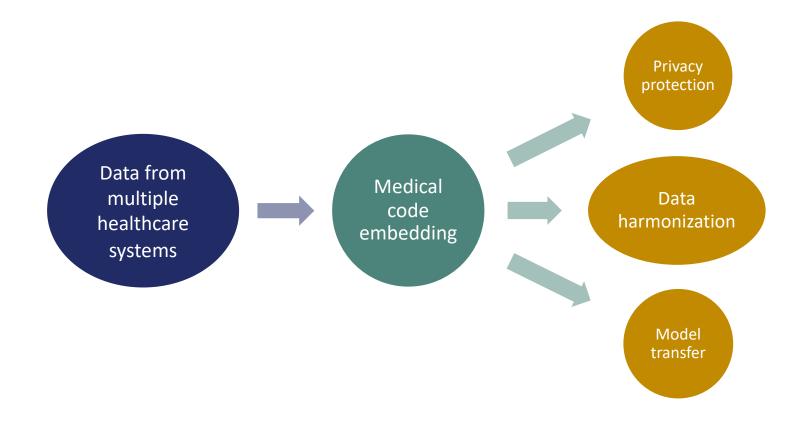
## Extend the hypergraph model to incorporate

- observed covariates of nodes
- more complex mechanism beside diversity and popularity
- information on nodes' different roles within edges

Future work

# Planned future work on hypergraph data

# Application to distributed EHR data network



# Thank you

| Hypergraph data | Model & Method | Numerical results | Theory | Future work |
|-----------------|----------------|-------------------|--------|-------------|
| References      |                |                   |        |             |
|                 |                |                   |        |             |

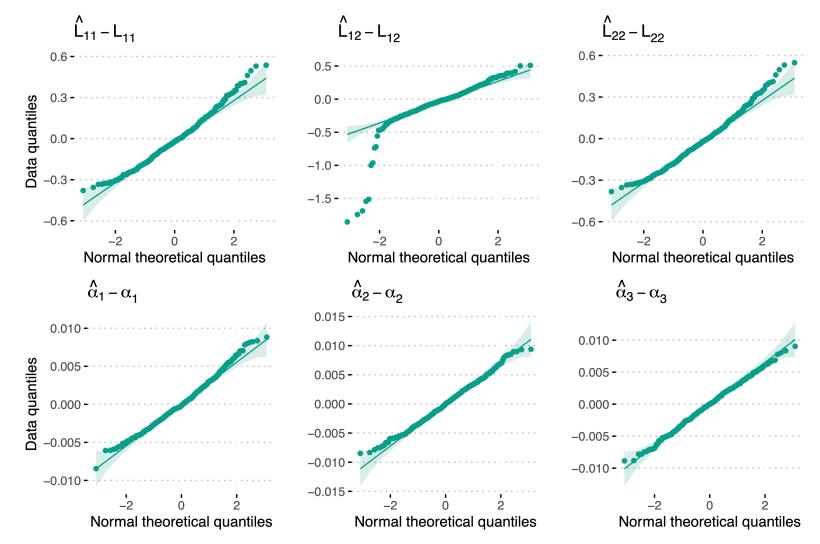
- Kulesza, A. and Taskar, B. (2012). Determinantal point processes for machine learning. Foundations and Trends in Machine Learning, 5(2–3).
- Brunel, V.-E., Moitra, A., Rigollet, P., and Urschel, J. (2017). Rates of estimation for determinantal point processes. In Conference on Learning Theory, pages 343–345. PMLR.
- Gartrell, M., Paquet, U., and Koenigstein, N. (2017). Low-rank factorization of determinantal point processes. In Thirty-First AAAI Conference on Artificial Intelligence.
- Li, H. and Lin, Z. (2015). Accelerated proximal gradient methods for nonconvex programming. Advances in neural information processing systems, 28:379–387.
- Ghoshdastidar, D. and Dukkipati, A. (2014). Consistency of spectral partitioning of uniform hypergraphs under planted partition model. Advances in Neural Information Processing Systems, 27:397–405.
- Ghoshdastidar, D. and Dukkipati, A. (2017b). Uniform hypergraph partitioning: Provable tensor methods and sampling techniques. The Journal of Machine Learning Research, 18(1):1638–1678.
- Chien, I., Lin, C.-Y., and Wang, I.-H. (2018). Community detection in hypergraphs: Optimal statistical limit and efficient algorithms. In International Conference on Artificial Intelligence and Statistics, pages 871–879. PMLR.
- Kim, C., Bandeira, A. S., and Goemans, M. X. (2018). Stochastic block model for hypergraphs: Statistical limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.
- Ke, Z. T., Shi, F., and Xia, D. (2019). Community detection for hypergraph networks via regularized tensor power iteration. arXiv preprint arXiv:1909.06503.
- Lyu, Z., Xia, D., and Zhang, Y. (2021). Latent space model for higher-order networks and generalized tensor decomposition. arXiv preprint arXiv:2106.16042.
- Yuan, Y. and Qu, A. (2021). High-order joint embedding for multi-level link prediction. Journal of the American Statistical Association, (just-accepted):1–39. Lunagomez, S., Mukherjee, S., Wolpert, R. L., and Airoldi, E. M. (2017). Geometric representations of random hypergraphs. Journal of the American Statistical Association, 112(517):363–383.

| Hypergraph data | Model & Method | Numerical results | Theory | Future work |
|-----------------|----------------|-------------------|--------|-------------|
| References      |                |                   |        |             |
|                 |                |                   |        |             |

- Stasi, D., Sadeghi, K., Rinaldo, A., Petroví c, S., and Fienberg, S. E. (2014). beta models for random hypergraphs with a given degree sequence. arXiv preprint arXiv:1407.1004.
- Zhang, D. and McCullagh, P. (2015). Exchangeable random hypergraphs. working paper.
- Ghoshdastidar, D. and Dukkipati, A. (2017a). Consistency of spectral hypergraph partitioning under planted partition model. The Annals of Statistics, 45(1):289–315.
- Turnbull, K., Lunagomez Coria, S., Nemeth, C., and Airoldi, E. (2019). Latent space representations of hypergraphs. arxiv. org.
- Chodrow, P. S., Veldt, N., and Benson, A. R. (2021). Generative hypergraph clustering: from blockmodels to modularity. arXiv preprint arXiv:2101.09611.
- Ng, T. L. J. and Murphy, T. B. (2021). Model-based clustering for random hypergraphs. Advances in Data Analysis and Classification, pages 1–33.
- Zhen, Y. and Wang, J. (2021). Community detection in general hypergraph via graph embedding. arXiv preprint arXiv:2103.15035.

Hypergraph dataModel & MethodNumerical resultsTheoryFuture workAppendix - simulations (asymptotic normality)

Results of 500 repeated simulations:  $n_v$ =100, d = 2,  $n_e = 3000$ 



Hypergraph dataModel & MethodNumerical resultsTheoryFuture workAppendix - simulations (asymptotic normality)

Results of 500 repeated simulations:  $n_v$ =100, d = 2,  $n_e = 3000$ 

